Downloads provided by UsageCounts
In this paper, we consider the Bayes estimators of the unknown parameters of the exponentiated Weibull distribution (EWD) under the assumptions of gamma priors on both shape parameters. Point estimation and confidence intervals based on maximum likelihood and bootstrap methods are proposed. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov chain Monte Carlo (MCMC) techniques to generate samples from the posterior distributions and in turn computing the Bayes estimators. The approximate Bayes estimators obtained under the assumptions of non-informative priors are compared with the maximum likelihood estimators using Monte Carlo simulations. A numerical example is also presented for illustrative purposes.
Exponentiated Weibull distribution (EWD), Record values, Bootstrap methods, Bayes estimation, Gibbs and Metropolis sampler
Exponentiated Weibull distribution (EWD), Record values, Bootstrap methods, Bayes estimation, Gibbs and Metropolis sampler
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 12 | |
| downloads | 6 |

Views provided by UsageCounts
Downloads provided by UsageCounts