Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2019
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2019
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Consensus models to predict oral rat acute toxicity and validation on a dataset coming from the industrial context

Authors: Lunghini, Filippo; Marcou, Gilles; Azam, Philippe; Horvath, Dragos; Patoux, Remi; Van Miert, Erik; Varnek, Alexandre;

Consensus models to predict oral rat acute toxicity and validation on a dataset coming from the industrial context

Abstract

We report predictive models of acute oral systemic toxicity representing a follow-up of our previous work in the framework of the NICEATM project. It includes the update of original models through the addition of new data and an external validation of the models using a dataset relevant for the chemical industry context. A regression model for LD50 and classification model for toxicity classes according to the Global Harmonized System categories were prepared. ISIDA descriptors were used to encode molecular structures. Machine learning algorithms included Support Vector Machine (SVM), Random Forest (RF) and Naïve Bayesian. Selected individual models were combined in consensus. The different datasets were compared using the Generative Topographic Mapping approach. It appeared that the NICEATM datasets were lacking some relevant chemotypes for chemical industry. The new models trained on enlarged data sets have applicability domain (AD) sufficiently large to accommodate industrial compounds. The fraction of compounds inside the models’ AD increased from 58 % (NICEATM model) to 94 % (new model). Yet, the increase of training sets only slightly improved of the models’ prediction performance: RMSE values decreased from 0.56 to 0.47 and balanced accuracies increased from 0.69 to 0.71 for NICEATM and new models, respectively.

{"references": ["N.C. Kleinstreuer et al., Comput. Tox. 201 (2018), pp. 489\u2013492", "T. Martin et al., Toxicity Estimation Software Tool v 4.1, US Environmental Protection Agency, 2012; software available at: https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test.", "S. Bhatia, Regul. Toxicol. Pharmacol. 71 (2015), pp. 52\u201362", "OECD, Data from: eChemPortal: Global portal to information on chemical substances, Organisation for Economic Co-operation Development; dataset available at: https://www.echemportal.org/echemportal/index.action."]}

Related Organizations
Keywords

QSAR/QSPR; Generative topographic mapping (GTM); Oral rat acute toxicity; OECD principles; REACH

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 47
    download downloads 18
  • 47
    views
    18
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
47
18
Related to Research communities