Downloads provided by UsageCounts
Despite the importance of sperm DNA to human reproduction, currently no method exists to assess individual sperm DNA quality prior to clinical selection. Traditionally, skilled clinicians select sperm based on a variety of morphological and motility criteria, but without direct knowledge of their DNA cargo. Here, we show how a deep convolutional neural network can be trained on a collection of ~1000 sperm cells of known DNA quality, to predict DNA quality from brightfield images alone. Our results demonstrate moderate correlation (bivariate correlation ~0.43) between a sperm cell image and DNA quality and the ability to identify higher DNA integrity cells relative to the median. This deep learning selection process is directly compatible with current, manual microscopy-based sperm selection and could assist clinicians, by providing rapid DNA quality predictions (under 10 ms per cell) and sperm selection within the 86th percentile from a given sample.
deep learning, DNA integrity, fertility, sperm selection, intracyoplasmic sperm injection (ICSI), deep learning, DNA integrity, fertility, sperm selection, intracytoplasmic sperm injection (ICSI)
deep learning, DNA integrity, fertility, sperm selection, intracyoplasmic sperm injection (ICSI), deep learning, DNA integrity, fertility, sperm selection, intracytoplasmic sperm injection (ICSI)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 6 | |
| downloads | 2 |

Views provided by UsageCounts
Downloads provided by UsageCounts