Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Coordination Chemist...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Coordination Chemistry Reviews
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Research . 2016
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2016
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2016
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Research . 2016
License: CC BY
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Coordination Chemistry Reviews
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
ZENODO
Article . 2016
Data sources: ZENODO
ZENODO
Article . 2016
Data sources: ZENODO
Coordination Chemistry Reviews
Article . 2016 . Peer-reviewed
http://dx.doi.org/10.1016/j.cc...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cu(I) complexes – Thermally activated delayed fluorescence. Photophysical approach and material design

Authors: Czerwieniec, Rafał; Leitl, Markus J.; Homeier, Herbert H.H.; Yersin, Hartmut;

Cu(I) complexes – Thermally activated delayed fluorescence. Photophysical approach and material design

Abstract

Cu(I) complexes often show transitions of distinct metal-to-ligand charge transfer (MLCT) character. This can lead to small energy separations between the lowest singlet S1 and triplet T1 state. Hence, thermally activated delayed fluorescence (TADF) and, if applied to electroluminescent devices, singlet harvesting can become highly effective. In this contribution, we introduce the TADF mechanism and identify crucial parameters that are necessary to optimize materials’ properties, in particular, with respect to short emission decay times and high quantum yields at ambient temperature. In different case studies, we present a photophysical background for a deeper understanding of the materials’ properties. Accordingly, we elucidate strategies for obtaining high quantum yields. These are mainly based on enhancing the intrinsic rigidity of the complexes and of their environment. Efficient TADF essentially requires small energy separations DE(S1-T1) with preference below about 1000 cm-1 (≈ 120 meV). This is achievable with complexes that exhibit small spatial HOMO-LUMO overlap. Thus, energy separations below 300 cm-1 (≈ 37 meV) are obtained, giving short radiative TADF decay times of less than 5 ms. In a case study, it is shown that the TADF properties may be tuned or the TADF effect can even be turned off. However, very small DE(S1-T1) energy separations are related to small radiative rates or small oscillator strengths of the S1→S0 transitions due to the (required) small HOMO-LUMO overlap, as discussed in a further case study. In this respect, large spin-orbit coupling (SOC) of the triplet state to higher lying singlet states can induce an additional phosphorescence decay path that leads to a luminescence consisting of TADF and phosphorescence, thus representing a combined singlet harvesting and triplet harvesting mechanism. This gives an overall reduction of the decay time. Finally, in a strongly simplified model, the SOC efficiency is traced back to easily obtainable results from DFT calculations.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    500
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 50
  • 4
    views
    50
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
500
Top 0.1%
Top 1%
Top 0.1%
4
50
Green
hybrid