Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2019
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2019
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2019
License: CC BY
Data sources: ZENODO
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Models generated by SIMON

Authors: Tomic, Adriana; Tomic, Ivan;

Models generated by SIMON

Abstract

Here you can find information about all models generated by SIMON. Models can be downloaded and re-used for predictions. Each dataset is stored in separate folder which contains all the models built for that dataset. Name format is: {modelName}.RData This file contains following information: - All training specific model data: folds, tuning parameters, etc - All predictions made with test dataset - Confusion matrix and all performance measures calculated - Features and their Variable Importance Scores Here is an example of RData file structure: List of 5 $ model_training_fit :List of 23 ..$ method : chr "bagEarth" ..$ modelInfo :List of 15 .. ..$ label : chr "Bagged MARS" .. ..$ library : chr "earth" .. ..$ type : chr [1:2] "Regression" "Classification" .. ..$ parameters:'data.frame': 2 obs. of 3 variables: .. .. ..$ parameter: Factor w/ 2 levels "degree","nprune": 2 1 .. .. ..$ class : Factor w/ 1 level "numeric": 1 1 .. .. ..$ label : Factor w/ 2 levels "#Terms","Product Degree": 1 2 .. ..$ grid :function (x, y, len = NULL, search = "grid") .. ..$ loop :function (grid) .. ..$ fit :function (x, y, wts, param, lev, last, classProbs, ...) .. ..$ predict :function (modelFit, newdata, submodels = NULL) .. ..$ prob :function (modelFit, newdata, submodels = NULL) .. ..$ predictors:function (x, ...) .. ..$ varImp :function (object, ...) .. ..$ levels :function (x) .. ..$ tags : chr [1:5] "Multivariate Adaptive Regression Splines" "Ensemble Model" "Implicit Feature Selection" "Bagging" ... .. ..$ sort :function (x) .. ..$ oob :function (x) ..$ modelType : chr "Classification" ..$ results :'data.frame': 3 obs. of 24 variables: .. ..$ degree : num [1:3] 1 1 1 .. ..$ nprune : num [1:3] 2 10 18 .. ..$ logLoss : num [1:3] 1.27 1.84 1.66 .. ..$ AUC : num [1:3] 0.694 0.75 0.695 .. ..$ Accuracy : num [1:3] 0.623 0.698 0.657 .. ..$ Kappa : num [1:3] 0.12 0.36 0.262 .. ..$ F1 : num [1:3] 0.46 0.614 0.542 .. ..$ Sensitivity : num [1:3] 0.217 0.589 0.517 .. ..$ Specificity : num [1:3] 0.895 0.765 0.743 .. ..$ Pos_Pred_Value : num [1:3] 0.606 0.655 0.6 .. ..$ Neg_Pred_Value : num [1:3] 0.636 0.76 0.715 .. ..$ Detection_Rate : num [1:3] 0.0864 0.238 0.2098 .. ..$ Balanced_Accuracy : num [1:3] 0.556 0.677 0.63 .. ..$ logLossSD : num [1:3] 0.188 0.693 0.562 .. ..$ AUCSD : num [1:3] 0.19 0.146 0.157 .. ..$ AccuracySD : num [1:3] 0.0922 0.1339 0.1302 .. ..$ KappaSD : num [1:3] 0.217 0.28 0.279 .. ..$ F1SD : num [1:3] 0.099 0.174 0.176 .. ..$ SensitivitySD : num [1:3] 0.204 0.246 0.266 .. ..$ SpecificitySD : num [1:3] 0.12 0.194 0.182 .. ..$ Pos_Pred_ValueSD : num [1:3] 0.369 0.257 0.235 .. ..$ Neg_Pred_ValueSD : num [1:3] 0.0711 0.1264 0.137 .. ..$ Detection_RateSD : num [1:3] 0.0818 0.1114 0.1167 .. ..$ Balanced_AccuracySD: num [1:3] 0.0996 0.1358 0.1406 ..$ pred :'data.frame': 720 obs. of 8 variables: .. ..$ pred : Factor w/ 2 levels "high","low": 2 1 2 2 2 2 1 2 2 2 ... .. ..$ obs : Factor w/ 2 levels "high","low": 1 1 2 2 2 2 1 1 1 2 ... .. ..$ rowIndex: int [1:720] 4 26 34 39 43 47 65 4 26 34 ... .. ..$ high : num [1:720] 0.415 0.822 0.39 0.276 0.135 ... .. ..$ low : num [1:720] 0.585 0.178 0.61 0.724 0.865 ... .. ..$ degree : num [1:720] 1 1 1 1 1 1 1 1 1 1 ... .. ..$ nprune : num [1:720] 18 18 18 18 18 18 18 2 2 2 ... .. ..$ Resample: chr [1:720] "Fold01.Rep1" "Fold01.Rep1" "Fold01.Rep1" "Fold01.Rep1" ... ..$ bestTune :'data.frame': 1 obs. of 2 variables: .. ..$ nprune: num 10 .. ..$ degree: num 1 ..$ call : language train.formula(form = factor(outcome) ~ ., data = training, method = model, trControl = trControl, preProcess = NU| __truncated__ ..$ dots : list() ..$ metric : chr "Accuracy" ..$ control :List of 27 .. ..$ method : chr "repeatedcv" .. ..$ number : num 10 .. ..$ repeats : num 3 .. ..$ search : chr "grid" .. ..$ p : num 0.75 .. ..$ initialWindow : NULL .. ..$ horizon : num 1 .. ..$ fixedWindow : logi TRUE .. ..$ skip : num 0 .. ..$ verboseIter : logi FALSE .. ..$ returnData : logi TRUE .. ..$ returnResamp : chr "final" .. ..$ savePredictions : chr "all" .. ..$ classProbs : logi TRUE .. ..$ summaryFunction :function (data, lev = NULL, model = NULL) .. ..$ selectionFunction: chr "best" .. ..$ preProcOptions :List of 6 .. .. ..$ thresh : num 0.95 .. .. ..$ ICAcomp : num 3 .. .. ..$ k : num 5 .. .. ..$ freqCut : num 19 .. .. ..$ uniqueCut: num 10 .. .. ..$ cutoff : num 0.9 .. ..$ sampling : NULL .. ..$ index :List of 30 .. .. ..$ Fold01.Rep1: int [1:73] 1 2 3 5 6 7 8 9 10 11 ... .. .. ..$ Fold02.Rep1: int [1:72] 1 2 3 4 5 6 7 8 9 10 ... .. .. ..$ Fold03.Rep1: int [1:72] 1 2 3 4 5 6 7 8 9 10 ... .. .. ..$ Fold04.Rep1: int [1:71] 1 2 3 4 5 7 8 9 10 11 ... .. .. ..$ Fold05.Rep1: int [1:72] 1 2 3 4 5 6 7 8 9 10 ... .. .. ..$ Fold06.Rep1: int [1:72] 1 2 4 6 7 8 9 10 11 12 ... .. .. ..$ Fold07.Rep1: int [1:73] 1 3 4 5 6 7 8 9 10 11 ... .. .. ..$ Fold08.Rep1: int [1:71] 1 2 3 4 5 6 7 9 10 11 ... .. .. ..$ Fold09.Rep1: int [1:72] 1 2 3 4 5 6 7 8 10 11 ... .. .. ..$ Fold10.Rep1: int [1:72] 2 3 4 5 6 8 9 12 13 14 ... .. .. ..$ Fold01.Rep2: int [1:72] 1 2 4 5 6 7 8 9 10 11 ... .. .. ..$ Fold02.Rep2: int [1:72] 1 2 3 4 5 6 7 8 9 10 ... .. .. ..$ Fold03.Rep2: int [1:72] 1 2 3 4 5 6 7 9 10 11 ... .. .. ..$ Fold04.Rep2: int [1:72] 1 2 3 4 5 6 7 8 9 10 ... .. .. ..$ Fold05.Rep2: int [1:71] 1 2 3 4 5 6 7 8 9 11 ... .. .. ..$ Fold06.Rep2: int [1:71] 1 2 3 5 6 7 8 9 10 11 ... .. .. ..$ Fold07.Rep2: int [1:73] 1 3 4 5 6 8 9 10 11 12 ... .. .. ..$ Fold08.Rep2: int [1:73] 2 3 4 5 6 7 8 9 10 11 ... .. .. ..$ Fold09.Rep2: int [1:72] 1 2 3 4 5 6 7 8 10 12 ... .. .. ..$ Fold10.Rep2: int [1:72] 1 2 3 4 7 8 9 10 11 12 ... .. .. ..$ Fold01.Rep3: int [1:72] 1 3 4 6 7 8 9 10 11 12 ... .. .. ..$ Fold02.Rep3: int [1:73] 1 2 3 4 5 6 7 8 10 11 ... .. .. ..$ Fold03.Rep3: int [1:72] 1 2 3 4 5 6 7 8 9 10 ... .. .. ..$ Fold04.Rep3: int [1:72] 1 2 3 5 6 7 8 9 10 11 ... .. .. ..$ Fold05.Rep3: int [1:72] 2 3 4 5 6 7 8 9 10 11 ... .. .. ..$ Fold06.Rep3: int [1:72] 1 2 3 4 5 6 7 9 10 12 ... .. .. ..$ Fold07.Rep3: int [1:72] 1 2 3 4 5 6 8 9 10 11 ... .. .. ..$ Fold08.Rep3: int [1:71] 1 2 4 5 7 8 9 10 11 13 ... .. .. ..$ Fold09.Rep3: int [1:72] 1 2 3 4 5 6 7 8 9 10 ... .. .. ..$ Fold10.Rep3: int [1:72] 1 2 3 4 5 6 7 8 9 11 ... .. ..$ indexOut :List of 30 .. .. ..$ Resample01: int [1:7] 4 26 34 39 43 47 65 .. .. ..$ Resample02: int [1:8] 24 28 45 56 64 69 72 78 .. .. ..$ Resample03: int [1:8] 20 23 27 40 50 53 57 66 .. .. ..$ Resample04: int [1:9] 6 21 38 46 49 51 54 67 77 .. .. ..$ Resample05: int [1:8] 14 17 42 48 52 62 76 79 .. .. ..$ Resample06: int [1:8] 3 5 15 18 19 36 37 73 .. .. ..$ Resample07: int [1:7] 2 29 33 58 59 71 80 .. .. ..$ Resample08: int [1:9] 8 13 22 30 31 32 35 61 68 .. .. ..$ Resample09: int [1:8] 9 12 44 55 60 70 74 75 .. .. ..$ Resample10: int [1:8] 1 7 10 11 16 25 41 63 .. .. ..$ Resample11: int [1:8] 3 24 27 28 39 53 55 77 .. .. ..$ Resample12: int [1:8] 14 16 36 41 46 59 69 73 .. .. ..$ Resample13: int [1:8] 8 17 31 50 63 70 71 80 .. .. ..$ Resample14: int [1:8] 19 25 35 52 54 58 65 72 .. .. ..$ Resample15: int [1:9] 10 12 13 23 32 38 48 76 78 .. .. ..$ Resample16: int [1:9] 4 21 22 33 34 44 64 67 75 .. .. ..$ Resample17: int [1:7] 2 7 42 49 51 60 79 .. .. ..$ Resample18: int [1:7] 1 15 26 29 37 40 57 .. .. ..$ Resample19: int [1:8] 9 11 18 45 47 56 62 66 .. .. ..$ Resample20: int [1:8] 5 6 20 30 43 61 68 74 .. .. ..$ Resample21: int [1:8] 2 5 34 38 49 53 54 74 .. .. ..$ Resample22: int [1:7] 9 19 26 27 32 70 78 .. .. ..$ Resample23: int [1:8] 17 33 36 46 48 52 64 73 .. .. ..$ Resample24: int [1:8] 4 13 18 21 35 58 63 71 .. .. ..$ Resample25: int [1:8] 1 20 24 28 30 50 55 65 .. .. ..$ Resample26: int [1:8] 8 11 15 22 62 66 72 75 .. .. ..$ Resample27: int [1:8] 7 14 25 31 40 47 59 79 .. .. ..$ Resample28: int [1:9] 3 6 12 42 43 60 69 77 80 .. .. ..$ Resample29: int [1:8] 23 29 41 45 56 57 67 68 .. .. ..$ Resample30: int [1:8] 10 16 37 39 44 51 61 76 .. ..$ indexFinal : NULL .. ..$ timingSamps : num 0 .. ..$ predictionBounds : logi [1:2] FALSE FALSE .. ..$ seeds :List of 31 .. .. ..$ : int [1:9] 114 622 609 999 858 638 10 231 661 .. .. ..$ : int [1:9] 515 693 544 282 920 291 833 285 265 .. .. ..$ : int [1:9] 187 232 316 302 159 40 218 805 522 .. .. ..$ : int [1:9] 915 831 46 455 265 304 505 180 754 .. .. ..$ : int [1:9] 202 259 991 805 552 644 310 618 328 .. .. ..$ : int [1:9] 502 677 485 244 763 74 308 713 501 .. .. ..$ : int [1:9] 153 504 493 749 174 845 860 42 315 .. .. ..$ : int [1:9] 14 239 706 308 507 52 562 121 886 .. .. ..$ : int [1:9] 15 783 90 518 383 70 319 664 919 .. .. ..$ : int [1:9] 472 143 544 196 895 388 310 159 890 .. .. ..$ : int [1:9] 167 900 134 132 105 510 299 27 308 .. .. ..$ : int [1:9] 743 36 564 280 204 134 324 154 129 .. .. ..$ : int [1:9] 436 39 712 101 947 122 219 907 939 .. .. ..$ : int [1:9] 280 124 796 743 913 990 937 483 282 .. .. ..$ : int [1:9] 252 503 496 318 959 631 127 421 908 .. .. ..$ : int [1:9] 468 908 597 630 866 501 978 323 478 .. .. ..$ : int [1:9] 357 627 741 565 977 574 437 227 82 .. .. ..$ : int [1:9] 851 235 987 601 995 374 552 427 572 .. .. ..$ : int [1:9] 433 225 85 636 430 73 798 324 752 .. .. ..$ : int [1:9] 585 709 427 343 757 422 558 116 301 .. .. ..$ : int [1:9] 479 345 600 76 953 23 837 629 308 .. .. ..$ : int [1:9] 743 639 991 128 880 807 817 829 727 .. .. ..$ : int [1:9] 984 639 660 527 317 765 524 728 306 .. .. ..$ : int [1:9] 405 205 984 565 280 185 754 563 925 .. .. ..$ : int [1:9] 639 701 479 848 421 32 257 333 133 .. .. ..$ : int [1:9] 500 802 337 508 493 794 564 106 999 .. .. ..$ : int [1:9] 568 213 749 307 488 985 422 243 216 .. .. ..$ : int [1:9] 690 980 477 772 573 962 793 529 592 .. .. ..$ : int [1:9] 264 280 65 562 262 4 586 517 838 .. .. ..$ : int [1:9] 30 600 268 121 101 745 16 50 742 .. .. ..$ : int 358 .. ..$ adaptive :List of 4 .. .. ..$ min : num 5 .. .. ..$ alpha : num 0.05 .. .. ..$ method : chr "gls" .. .. ..$ complete: logi TRUE .. ..$ trim : logi FALSE .. ..$ allowParallel : logi TRUE ..$ trainingData:'data.frame': 80 obs. of 13 variables: .. ..$ .outcome : Factor w/ 2 levels "high","low": 2 2 1 1 1 1 1 1 1 1 ... .. ..$ CD161_pos_CD45RA_pos_Tregs : num [1:80] 1.68 0.84 0.43 0.56 0.73 0.64 0.53 1.15 0.51 1.38 ... .. ..$ CD27_pos_CD8_pos_T_cells : num [1:80] 85.2 71.9 84.5 83 74.8 66.4 87.7 64.1 87.3 89.5 ... .. ..$ CD85j_pos_CD8_pos_T_cells : num [1:80] 17.7 25.8 17.1 19.1 19.1 28.6 8.31 18.8 11 6.95 ... .. ..$ CD94_pos_CD8_pos_T_cells : num [1:80] 4.31 14.2 3.94 4.48 10.1 25.8 20.3 11 4.16 2.74 ... .. ..$ central_memory_CD8_pos_T_cells: num [1:80] 1.96 3.27 2.77 6.31 7.59 6.02 8.54 5.64 6.36 2.93 ... .. ..$ effector_CD8_pos_T_cells : num [1:80] 14.7 26.9 13.4 11.7 21 18.8 10.6 14.4 6.82 7.72 ... .. ..$ L50_EOTAXIN : num [1:80] -0.14 1.3 0.28 -0.76 0.16 0.4 0.17 0.88 0.73 0.84 ... .. ..$ L50_HGF : num [1:80] -0.06 1.45 -0.14 -1.12 -0.36 0.19 0.1 0.82 1.14 1.35 ... .. ..$ L50_IL7 : num [1:80] -0.11 1.49 -0.1 -0.88 0.07 0.23 0.18 0.99 0.97 1.26 ... .. ..$ L50_MCP3 : num [1:80] -1.38 2 -0.17 0.48 -0.54 1.03 0.8 0.43 1.06 0.77 ... .. ..$ L50_TRAIL : num [1:80] 0.17 1.8 0.21 -1.56 0.34 0.96 0 -0.59 1.43 1.65 ... .. ..$ monocytes : num [1:80] 17.1 12 20.5 21.2 13.4 15.9 18.2 12.7 14 14.6 ... ..$ resample :'data.frame': 30 obs. of 12 variables: .. ..$ logLoss : num [1:30] 2.89 2.01 1.22 3.06 1.56 ... .. ..$ AUC : num [1:30] 0.933 0.867 0.833 1 0.8 ... .. ..$ Accuracy : num [1:30] 0.875 0.625 0.857 0.889 0.625 ... .. ..$ Kappa : num [1:30] 0.714 0.143 0.696 0.769 0.143 ... .. ..$ F1 : num [1:30] 0.8 0.4 0.8 0.857 0.4 ... .. ..$ Sensitivity : num [1:30] 0.667 0.333 0.667 0.75 0.333 ... .. ..$ Specificity : num [1:30] 1 0.8 1 1 0.8 0.6 0.6 1 0.6 1 ... .. ..$ Pos_Pred_Value : num [1:30] 1 0.5 1 1 0.5 ... .. ..$ Neg_Pred_Value : num [1:30] 0.833 0.667 0.8 0.833 0.667 ... .. ..$ Detection_Rate : num [1:30] 0.25 0.125 0.286 0.333 0.125 ... .. ..$ Balanced_Accuracy: num [1:30] 0.833 0.567 0.833 0.875 0.567 ... .. ..$ Resample : chr [1:30] "Fold03.Rep1" "Fold02.Rep1" "Fold01.Rep1" "Fold04.Rep1" ... ..$ resampledCM :'data.frame': 90 obs. of 7 variables: .. ..$ degree : num [1:90] 1 1 1 1 1 1 1 1 1 1 ... .. ..$ nprune : num [1:90] 18 2 10 18 2 10 18 2 10 18 ... .. ..$ cell1 : num [1:90] 2 0 2 1 1 1 1 1 2 2 ... .. ..$ cell2 : num [1:90] 1 3 1 2 2 2 2 2 1 2 ... .. ..$ cell3 : num [1:90] 0 0 0 1 1 1 1 0 0 0 ... .. ..$ cell4 : num [1:90] 4 4 4 4 4 4 4 5 5 5 ... .. ..$ Resample: chr [1:90] "Fold01.Rep1" "Fold01.Rep1" "Fold01.Rep1" "Fold02.Rep1" ... ..$ perfNames : chr [1:11] "logLoss" "AUC" "Accuracy" "Kappa" ... ..$ maximize : logi TRUE ..$ yLimits : NULL ..$ times :List of 3 .. ..$ everything: 'proc_time' Named num [1:5] 2.25 0.56 13.92 156.52 8.29 .. .. ..- attr(*, "names")= chr [1:5] "user.self" "sys.self" "elapsed" "user.child" ... .. ..$ final : 'proc_time' Named num [1:5] 0.776 0.004 0.783 0 0 .. .. ..- attr(*, "names")= chr [1:5] "user.self" "sys.self" "elapsed" "user.child" ... .. ..$ prediction: logi [1:3] NA NA NA ..$ levels : chr [1:2] "high" "low" .. ..- attr(*, "ordered")= logi FALSE ..$ terms :Classes 'terms', 'formula' language factor(outcome) ~ CD161_pos_CD45RA_pos_Tregs + CD27_pos_CD8_pos_T_cells + CD85j_pos_CD8_pos_T_cells + CD94_pos_CD| __truncated__ $ model_prediction :List of 2 ..$ pred_prob:'data.frame': 25 obs. of 2 variables: .. ..$ high: num [1:25] 0.237 0.52 0.625 0.857 0.452 ... .. ..$ low : num [1:25] 0.763 0.48 0.375 0.143 0.548 ... ..$ pred_raw : Factor w/ 2 levels "high","low": 2 1 1 1 2 2 1 1 1 2 ... $ roc_auc :List of 2 ..$ roc_p:List of 15 .. ..$ percent : logi FALSE .. ..$ sensitivities : num [1:26] 1 1 1 0.933 0.867 ... .. ..$ specificities : num [1:26] 0 0.1 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.5 ... .. ..$ thresholds : num [1:26] -Inf 0.0625 0.0688 0.0753 0.122 ... .. ..$ direction : chr "<" .. ..$ cases : num [1:15] 0.52 0.625 0.452 0.55 0.735 ... .. ..$ controls : num [1:10] 0.237 0.857 0.238 0.354 0.167 ... .. ..$ fun.sesp :function (thresholds, controls, cases, direction) .. ..$ auc : 'auc' num 0.7 .. .. ..- attr(*, "partial.auc")= logi FALSE .. .. ..- attr(*, "percent")= logi FALSE .. .. ..- attr(*, "roc")=List of 15 .. .. .. ..$ percent : logi FALSE .. .. .. ..$ sensitivities : num [1:26] 1 1 1 0.933 0.867 ... .. .. .. ..$ specificities : num [1:26] 0 0.1 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.5 ... .. .. .. ..$ thresholds : num [1:26] -Inf 0.0625 0.0688 0.0753 0.122 ... .. .. .. ..$ direction : chr "<" .. .. .. ..$ cases : num [1:15] 0.52 0.625 0.452 0.55 0.735 ... .. .. .. ..$ controls : num [1:10] 0.237 0.857 0.238 0.354 0.167 ... .. .. .. ..$ fun.sesp :function (thresholds, controls, cases, direction) .. .. .. ..$ auc : 'auc' num 0.7 .. .. .. .. ..- attr(*, "partial.auc")= logi FALSE .. .. .. .. ..- attr(*, "percent")= logi FALSE .. .. .. .. ..- attr(*, "roc")=List of 8 .. .. .. .. .. ..$ percent : logi FALSE .. .. .. .. .. ..$ sensitivities: num [1:26] 1 1 1 0.933 0.867 ... .. .. .. .. .. ..$ specificities: num [1:26] 0 0.1 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.5 ... .. .. .. .. .. ..$ thresholds : num [1:26] -Inf 0.0625 0.0688 0.0753 0.122 ... .. .. .. .. .. ..$ direction : chr "<" .. .. .. .. .. ..$ cases : num [1:15] 0.52 0.625 0.452 0.55 0.735 ... .. .. .. .. .. ..$ controls : num [1:10] 0.237 0.857 0.238 0.354 0.167 ... .. .. .. .. .. ..$ fun.sesp :function (thresholds, controls, cases, direction) .. .. .. .. .. ..- attr(*, "class")= chr "roc" .. .. .. ..$ call : language roc.default(response = testing$outcome, predictor = predict_model[, "high"], levels = levels(testing$outcome)) .. .. .. ..$ original.predictor: num [1:25] 0.237 0.52 0.625 0.857 0.452 ... .. .. .. ..$ original.response : Factor w/ 2 levels "high","low": 1 2 2 1 2 1 2 2 2 2 ... .. .. .. ..$ predictor : num [1:25] 0.237 0.52 0.625 0.857 0.452 ... .. .. .. ..$ response : Factor w/ 2 levels "high","low": 1 2 2 1 2 1 2 2 2 2 ... .. .. .. ..$ levels : chr [1:2] "high" "low" .. .. .. ..- attr(*, "class")= chr "roc" .. ..$ call : language roc.default(response = testing$outcome, predictor = predict_model[, "high"], levels = levels(testing$outcome)) .. ..$ original.predictor: num [1:25] 0.237 0.52 0.625 0.857 0.452 ... .. ..$ original.response : Factor w/ 2 levels "high","low": 1 2 2 1 2 1 2 2 2 2 ... .. ..$ predictor : num [1:25] 0.237 0.52 0.625 0.857 0.452 ... .. ..$ response : Factor w/ 2 levels "high","low": 1 2 2 1 2 1 2 2 2 2 ... .. ..$ levels : chr [1:2] "high" "low" .. ..- attr(*, "class")= chr "roc" ..$ auc_p: num 0.7 $ confusion_matrix :List of 6 ..$ positive: chr "high" ..$ table : 'table' int [1:2, 1:2] 7 8 8 2 .. ..- attr(*, "dimnames")=List of 2 .. .. ..$ : chr [1:2] "low" "high" .. .. ..$ reference: chr [1:2] "low" "high" ..$ overall : Named num [1:7] 0.36 -0.333 0.18 0.575 0.6 ... .. ..- attr(*, "names")= chr [1:7] "Accuracy" "Kappa" "AccuracyLower" "AccuracyUpper" ... ..$ byClass : Named num [1:11] 0.2 0.467 0.2 0.467 0.2 ... .. ..- attr(*, "names")= chr [1:11] "Sensitivity" "Specificity" "Pos Pred Value" "Neg Pred Value" ... ..$ mode : chr "sens_spec" ..$ dots : list() ..- attr(*, "class")= chr "confusionMatrix" $ variable_importance:'data.frame': 12 obs. of 4 variables: ..$ score_perc: num [1:12] 100 78.8 63.1 47.6 34.5 ... ..$ features : chr [1:12] "L50_EOTAXIN" "central_memory_CD8_pos_T_cells" "CD94_pos_CD8_pos_T_cells" "L50_TRAIL" ... ..$ rank : int [1:12] 1 2 3 4 5 6 7 8 9 10 ... ..$ score_no : num [1:12] 99.3 78.2 62.7 47.3 34.3 ... File was compressed using 7-Zip available at https://www.7-zip.org/.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 37
    download downloads 2
  • 37
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
37
2
Funded by