
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract The Data Quality Monitoring (DQM) of CMS is a key asset to deliver high-quality data for physics analysis and it is used both in the online and offline environment. The current paradigm of the quality assessment is based on the scrutiny of a large number of histograms by detector experts comparing them with a reference. The project aims at applying recent progress in Machine Learning techniques to the automation of the DQM scrutiny. We explored the landscape of existing ML algorithms with particular attention to supervised problems (for offline DQM) to demonstrate their validity and usefulness on real test cases using CMS data.
CERN openlab summer student
CERN openlab summer student
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 1 | |
downloads | 3 |