
This paper examines the organizational implications of Generative AI adoption in software engineering through a multiple-case comparative study. We contrast two development environments: a traditional enterprise (brownfield) and an AI-native startup (greenfield). Our analysis reveals that transitioning from Horizontal Layering (functional specialization) to Vertical Integration (end-to-end ownership) yields 8× to 33× reductions in resource consumption. We attribute these gains to the emergence of Super Employees—AI-augmented engineers who span traditional role boundaries—and the elimination of inter-functional coordination overhead. Theoretically, we propose Human-AI Collaboration Efficacy as the primary optimization target for engineering organizations, supplanting individual productivity metrics. Our Total Factor Productivity analysis identifies an AI Distortion Effect that diminishes returns to labor scale while amplifying technological leverage. We conclude with managerial strategies for organizational redesign, including the reactivation of idle cognitive bandwidth in senior engineers and the suppression of blind scale expansion.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
