Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . null
Data sources: ZENODO
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Model Predictive Control of a Distillation Column

Authors: ARICI, Mehmet; Daosud, Wachira; Vargan, Jozef; Fikar, Miroslav;

Multi-Model Predictive Control of a Distillation Column

Abstract

Successful implementation of optimization-driven control techniques, such as model predictive control (MPC), is highly dependent on an accurate and detailed model of the process. As com-plexity in the system increases, linear approximation used in MPC may result in poor performance since a critical operating point is valid in only a small neighborhood of operation. To address this problem, this paper proposes a collaborative approach that combines linear and data-based mod-els to predict state variables individually. The outputs of these models, along with constraints, are then incorporated into the MPC algorithm. For data-based process model, a multi-layered feed-forward network is used. Additionally, the offset-free technique is applied to eliminate steady-state errors resulting from model-process mismatch. To demonstrate the results, a binary distilla-tion column process which is multivariable and inherently nonlinear is chosen as testbed. We com-pare the performance of the proposed method to MPC using the full nonlinear model and also to single-model MPC methods for both the linear model and neural network model. We show that the proposed method is only slightly suboptimal with respect to the best available performance and greatly improves over individual methods. In addition, the computational load is reduced when compared to the full nonlinear MPC.

Powered by OpenAIRE graph
Found an issue? Give us feedback
Funded by