Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Survey of Classification Algorithms in Supervised Machine Learning

Authors: Mageshwari G.¹, Dr. Ramar K.², Monica R. Lakshmi³;

A Survey of Classification Algorithms in Supervised Machine Learning

Abstract

Machine learning is crucial in enhancing predictive and diagnostic capabilities across multiple sectors. Professionals can use it to identify potential conditions and assess the risks associated with different intervention strategies. Machine Learning methods have shown significant potential in enhancing disease detection by offering accurate, efficient, and automated diagnostic capabilities. Supervised machine learning is a widely used approach in artificial intelligence that enables systems to learn from labeled data and make accurate predictions. This paper explores various supervised learning techniques, including classification models, which are applied across diverse domains such as healthcare, finance, and natural language processing. This study focuses on the approaches and the applications of supervised learning and highlights its benefits, and discusses ongoing challenges and future directions for improving machine learning-based healthcare solutions.

Keywords

Health Care, Machine Learning, Supervised Learning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!