Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Preprint . 2025
License: CC BY
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rethinking Statistics and Causality: Why Mechanisms Cannot Be Inferred from Data Distributions

Authors: Diau, Egil;

Rethinking Statistics and Causality: Why Mechanisms Cannot Be Inferred from Data Distributions

Abstract

Statistical and causal inference have become universal currencies of explanation across the sciences, particularly in domains where underlying mechanisms remain opaque. Their apparent rigor—spanning psychology, economics and biomedicine—rests on the assumption that patterns within data can reveal the processes that generate them. Yet persistent mismatches between empirical predictions and real-world behaviour expose a deeper limitation: mechanisms cannot be inferred from data distributions alone. To address this limitation, we revisit the foundations of both paradigms, showing how statistical inference reduces explanation to geometric alignment, while causal inference, evolved from Bayes’ theorem and graphical models, extends this misstep by conflating probabilistic structure with causal truth. Both expose the same epistemic gap: data encode a lower-dimensional projection of structure, not the mechanism that generates it. We argue that understanding the world follows two routes: one is data-driven, expanding models toward richer function classes to achieve high-precision prediction, as exemplified by modern deep learning; the other is mechanism-driven, proposing and testing structural hypotheses as in the physical sciences. A robust framework requires both: data-driven models for high-precision prediction, and mechanistic models for reconstructing how the world produces the data we observe.

Keywords

Machine Learning, Causal Inference, Deep Learning, Artificial Intelligence, Statistics, FOS: Mathematics, Statistics and probability, Bayesian statistics, Data science

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!