Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/pimrc6...
Article . 2025 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Near-Field Spatial non-Stationary Channel Estimation: Visibility-Region-HMM-Aided Polar-Domain Simultaneous OMP

Authors: Ceulemans, Thibaut; Thys, Cel; Beerten, Robbert; Cui, Zhuangzhuang; Pollin, Sofie;

Near-Field Spatial non-Stationary Channel Estimation: Visibility-Region-HMM-Aided Polar-Domain Simultaneous OMP

Abstract

This work focuses on channel estimation in extremely large aperture array (ELAA) systems, where near-field propagation and spatial non-stationarity introduce complexities that hinder the effectiveness of traditional estimation techniques. A physics-based hybrid channel model is developed, incorporating non-binary visibility region (VR) masks to simulate diffraction-induced power variations across the antenna array. To address the estimation challenges posed by these channel conditions, a novel algorithm is proposed: Visibility-Region-HMM-Aided Polar-Domain Simultaneous Orthogonal Matching Pursuit (VR-HMM-P-SOMP). The method extends a greedy sparse recovery framework by integrating VR estimation through a hidden Markov model (HMM), using a novel emission formulation and Viterbi decoding. This allows the algorithm to adaptively mask steering vectors and account for spatial non-stationarity at the antenna level. Simulation results demonstrate that the proposed method enhances estimation accuracy compared to existing techniques, particularly in low-SNR and sparse scenarios, while maintaining a low computational complexity. The algorithm presents robustness across a range of design parameters and channel conditions, offering a practical solution for ELAA systems.

Keywords

Signal Processing (eess.SP), Signal Processing, FOS: Electrical engineering, electronic engineering, information engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green