Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Análisis comparativo de técnicas de visión artificial para la detección de deforestación a partir de imágenes del satélite LANDSAT 7

Authors: Castro-Arias, Santiago;

Análisis comparativo de técnicas de visión artificial para la detección de deforestación a partir de imágenes del satélite LANDSAT 7

Abstract

Este estudio explora la aplicación de técnicas de visión artificial para la detección de deforestación utilizando imágenes satelitales LANDSAT 7. Se emplearon dos algoritmos de clasificación principales, Random Forest y K-Means, para evaluar su efectividad en la identificación de áreas deforestadas. Random Forest, un método de aprendizaje supervisado, demostró alta precisión y robustez debido a su capacidad para manejar datos etiquetados y múltiples variables, lo que lo hace adecuado para esta tarea. Por otro lado, K-Means, un algoritmo no supervisado, tuvo dificultades con la precisión en este contexto, lo que destacó sus limitaciones al tratar con datos complejos del mundo real como imágenes satelitales. El método TOPSIS se aplicó para una evaluación multicriterio de los algoritmos, proporcionando una comparación exhaustiva que reveló la superioridad de Random Forest en esta aplicación. TOPSIS fue instrumental en la evaluación objetiva del rendimiento de cada algoritmo con base en varios criterios, asegurando un análisis equilibrado y exhaustivo. El estudio concluye que la integración de datos satelitales de alta resolución con técnicas sofisticadas de clasificación y evaluación como Random Forest y TOPSIS mejora significativamente la detección y el monitoreo de la deforestación, contribuyendo a estrategias de conservación forestal más efectivas.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!