Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Other literature type . 2025
License: CC BY
Data sources: Datacite
ZENODO
Other literature type . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Discovery of diverse chimeric peptides in a eukaryotic proteome sets the stage for experimental validation of the mosaic translation hypothesis

Authors: Çakır, Umut;

Discovery of diverse chimeric peptides in a eukaryotic proteome sets the stage for experimental validation of the mosaic translation hypothesis

Abstract

The high complexity of eukaryotic organisms enabled their evolutionary success, driven by the diversification of their proteomes. Various mechanisms contributed to this process. Alternative splicing had the largest known impact among these mechanisms. Earlier, we hypothesized that along with alternative splicing, a different but conceptually similar mechanism creates novel versions of existing proteins in all eukaryotes. However, this mechanism operates at the level of translation, where amino acid sequence novelty arises through multiple programmed ribosomal frameshifting events occurring within the same transcript. This mechanism, which is termed mosaic translation, is very difficult to demonstrate even with the most up-to-date molecular tools. Thus, it remained unnoticed so far. Using a subset of mass spectrometry proteomic data from various organs of the model plant Medicago truncatula, we took the first step toward experimental validation of this hypothesis. Our original in silico approach resulted in the discovery of two candidates for mosaic proteins (homologs of EF1α and RuBisCo) and 154 candidates for chimeric peptides. Chimeric peptides and polypeptides are produced in the course of one ribosomal frameshifting event and may correspond to parts of mosaic proteins. In addition, our analysis reveals the possibility of translation of chimeric peptides from five ribosomal RNA transcripts, ten long non-coding RNA transcripts, and one transfer RNA transcript. These findings are novel and will form the basis for future experimental validation. We also present multiple lines of indirect evidence supporting the validity of our in silico data.

Keywords

Medicago truncatula/growth & development, programmed ribosomal frameshifting, alternative open reading frame, Medicago truncatula, RuBisCo, chimeric peptide, Medicago/genetics, mass spectrometry proteomics, Medicago truncatula/genetics, elongation factor, mosaic translation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?