
File content Pre-trained fairseq models and tokenizers for the 16 combinations of SMILES/SELFIES chemical language, atomwise/SentencePiece tokenizer, implicit/explict chirality representations, and BART/RoBERTa model architecture. Abstract Chemical language models (CLMs) have shown strong performance in molecular property prediction and generation tasks. However, the impact of design choices, such as molecular representation format, tokenization strategy, and model architecture, on both performance and chemical interpretability remains underexplored. In this study, we systematically evaluate how these factors influence CLM performance and chemical understanding. We evaluated models through finetuning on downstream tasks and probing the structure of their latent spaces using simple classifiers and dimensionality reduction techniques. Despite similar performance on downstream tasks across model configurations, we observed substantial differences in the structure and interpretability of their internal representations. SMILES molecular representation format with atomwise tokenization strategy consistently produced more chemically meaningful embeddings, while models based on BART and RoBERTa architectures yielded comparably interpretable representations. These findings highlight that design choices meaningfully shape how chemical information is represented, even when external metrics appear unchanged. This insight can inform future model development, encouraging more chemically grounded and interpretable CLMs.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
