
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Negli ultimi due decenni le tecniche di acquisizione del testo digitale da immagini hanno raggiunto prestazioni molto elevate, non solo per i testi a stampa ma anche per i manoscritti. Per quanto riguarda il greco antico, i risultati ottenuti su testi a stampa sono ormai comparabili a quelli disponibili per le lingue moderne, mentre iniziano ad emergere i primi progressi significativi anche sul fronte dei documenti scritti a mano. In questo contesto, il contributo presenta lo sviluppo e l’integrazione di diverse tecniche di riconoscimento del testo – OCR (Optical Character Recognition), HTR (Handwritten Text Recognition), ICR (Intelligent Character Recognition) e ATR (Automatic Text Recognition) – all’interno di piattaforme di scholarly editing collaborativo. L’obiettivo è migliorare l’accuratezza nella digitalizzazione di testi antichi e manoscritti complessi, aprendo nuove prospettive per la creazione di edizioni critiche digitali e per la condivisione collaborativa dei risultati da parte della comunità scientifica internazionale.
Over the past two decades, techniques for acquiring digital text from images have achieved very high performance, not only for printed texts but also for manuscripts. In the case of Ancient Greek, the results obtained on printed materials are now comparable to those available for modern languages, while the first significant advances are beginning to emerge for handwritten documents as well. Against this backdrop, this contribution presents the development and integration of various text recognition techniques – OCR (Optical Character Recognition), HTR (Handwritten Text Recognition), ICR (Intelligent Character Recognition), and ATR (Automatic Text Recognition) – within collaborative scholarly editing platforms. The aim is to enhance the accuracy of digitizing ancient texts and complex manuscripts, thereby opening new perspectives for the creation of digital critical editions and for the collaborative sharing of results within the international scholarly community.
Optical Character Recognition, Digital Scholarly Editing, Handwritten Text Recognition, Digital humanities, Digital Classics
Optical Character Recognition, Digital Scholarly Editing, Handwritten Text Recognition, Digital humanities, Digital Classics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
