Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/icc523...
Article . 2025 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

Joint Placement and Scheduling for Time-Sensitive Applications in Edge Computing

Authors: Sakellariou, Ilias; Papathanail, George; Papadimitriou, Panagiotis;

Joint Placement and Scheduling for Time-Sensitive Applications in Edge Computing

Abstract

In the dawn of the 6G era, edge computing environments have to cope with the increasing demands of nextgeneration cloud-native applications, such as time-sensitive applications. In this context, the application-graph placement problem is further exacerbated by the need to efficiently schedule timesensitive traffic in order to meet stringent latency or other Quality of Service (QoS) requirements. This time-sensitive aspect, which is often overlooked, raises the need for a unified placement and scheduling approach. To this end, we propose a holistic approach to the placement and scheduling problem for time-sensitive applications within edge computing facilities. In particular, we employ Constraint Programming (CP) to compute efficient solutions in a single step, avoiding the limitations stemming from the sequential execution of separate placement and scheduling solvers. Our solution is compliant with industrial Time-Sensitive Networking (TSN) standards (i.e., IEEE 802.1 Qbv). A comparative evaluation among a range of CP variants sheds lights into various aspects, such as the gains stemming from the use of search heuristics.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!