Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Innsbr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Thesis . 2025
License: CC BY
Data sources: Datacite
ZENODO
Thesis . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Frequency comb Raman spectroscopy for quantum logic

Authors: Mattivi, Elyas;

Frequency comb Raman spectroscopy for quantum logic

Abstract

Molekulare Quantenzustände entstehen aus elektronischen, Schwingungs- und Rotationsenergieniveaus. Die Rotationszustände bilden distinkte Energiestrukturen, die in der Rotationsspektroskopie untersucht werden. Bei dieser Technik wird die Absorption oder Emission von Strahlung aus dem Übergang von Molekülen zwischen Rotationsniveaus gemessen, welche in der Regel durch Mikrowellen- oder Terahertzstrahlung durchgeführt werden. Während Mikrowellenstrahlung diese Übergänge direkt treibt, nutzt Terahertzstrahlung Raman-Übergänge, bei denen zwei Laser zum Einsatz kommen, deren Frequenzunterschied der Energielücke des Zielübergangs entspricht, wobei ein drittes Niveau weit außerhalb der Resonanz liegt. Optische Frequenzkämme, ultraschnelle Laser, die vor allem in der Messtechnik eingesetzt werden, können solche Übergänge kohärent steuern, wenn eine solche Energielücke innerhalb ihrer Bandbreite liegt. Die Forschungsgruppe, in der diese Arbeit durchgeführt wurde, plant, dieses System zur Manipulation von Rotationszuständen molekularer Ionen zu verwenden, um Spektroskopie und Experimente zur molekularen Quantenfehlerkorrektur zu ermöglichen. Der aktuelle Aufbau dieser Forschungsgruppe umfasst eine lineare Ionenfalle mit optischem Zugang für Laser, die Calcium-40-Ionen erzeugen, ionisieren und kühlen können. Sie ermöglicht auch die Verwendung eines 4^{2}S_{1/2} 3^{2}D_{5/2}-Übergangs als Qubit-Übergang und dessen Auslesung. Zusätzlich wurden Techniken zur Erzeugung von Molekülen auf Kalziumbasis implementiert. Das Hauptziel dieser Arbeit bestand darin, einen kommerziellen optischen Frequenzkamm in diesen Aufbau zu integrieren und gleichzeitig Selbstphasenmodulation zu implementieren, um seine Bandbreite zu vergrößern und den Bereich der zugänglichen Energiedifferenzen für Raman-Übergänge in Quantensystemen zu erweitern. Zusätzlich wurde eine Dispersionskompensation durchgeführt, um den Kamm näher an die Fourier-Grenze zu bringen und die Effizienz der Raman-Übergänge zu verbessern. Spektroskopische Demonstrationsmessungen wurden durchgeführt, indem Raman-\linebreak Übergänge zwischen den 3^{2}D_{5/2} (m_{5/2} = -1/2)- und 3^{2}D_{3/2} (m_{3/2})-Zuständen eines Calcium-40-Ions angetrieben wurden, wobei m_{3/2} entweder -1/2 oder +3/2 war. Diese Übergänge wurden gewählt, da sie eine ähnliche Übergangsfrequenz haben wie die Rotationszustände der angestrebten Molekül-Ionen. Als Ergebnis der durchgeführten Messungen wurde der Landé g-Faktor des 3^{2}D_{3/2}-Zustands mit g_{3/2} = 0,79945(2) bestimmt. Das Kamm-System ist in der Lage, die Rotationszustände von Molekülen wie CaH+ und CaOH+ zu manipulieren, die Teil zukünftiger quantenlogischer Experimente unserer Gruppe sein werden.

Molecular quantum states arise from electronic, vibrational, and rotational energy levels, with rotational states forming distinct energy structures studied in rotational spectroscopy. This technique measures the absorption or emission of radiation as molecules transition between rotational levels, typically using microwave or terahertz radiation. While microwave radiation probes these transitions directly, terahertz radiation uses Raman transitions, involving two lasers with a frequency difference matching the energy gap of the target transition, and a far off-resonant third energy level. Optical frequency combs, ultrafast lasers primarily used in metrology, can coherently drive such transitions when the energy falls within their bandwidth. The research group where this work was conducted plans to use this system to manipulate rotational states of molecular ions, enabling spectroscopy and molecular quantum error correction experiments. The state-of-the-art setup of this research group features a linear ion trap with optical access for lasers capable of ablating, ionizing, and cooling trapped calcium-40 ions. It also enables the use of a 4^{2}S_{1/2} 3^{2}D_{5/2} transition as a qubit manifold, along with its readout. Additionally, techniques for generating calcium-based molecules have been implemented. The primary goal of this work was to integrate a commercial optical frequency comb into the setup while implementing self-phase modulation to extend its bandwidth and expanding the range of accessible energy differences for Raman transitions in quantum systems. Additionally, dispersion compensation was applied to bring the comb closer to the Fourier limit, improving the efficiency of Raman transitions. Proof-of-principle spectroscopy measurements were performed by driving Raman transitions between the 3^{2}D_{5/2} (m_{5/2} = -1/2) and 3^{2}D_{3/2} (m_{3/2}) states of a calcium-40 ion, where m_{3/2} was either -1/2 or +3/2. These transitions were chosen since they have a similar transition frequency as targeted molecular ions. As a result of the performed measurements, the Landé g-factor of the 3^{2}D_{3/2} state was evaluated to be g_{3/2} = 0.79945(2). The comb system is capable of manipulating the rotational states of molecules such as CaH+ and CaOH+, which will be part of future quantum logic experiments of our group.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities