Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Dataset . 2025
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2025
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MAR2PROTECT Hydrophobic Eutectogels for the Removal of Contaminants of Emerging Concern from Water

Authors: Pereiro, Ana B.;

MAR2PROTECT Hydrophobic Eutectogels for the Removal of Contaminants of Emerging Concern from Water

Abstract

Five hydrophobic eutectic solvents based on menthol and thymol were prepared and incorporated into a poly(ethylene glycol) diacrylate (PEGDA) network to form eutectogel membranes. The two most promising eutectogels were further optimized by adding ethyl hexylacrylate (HA) to the eutectogel formulation to improve the compatibility between the eutectic solvent and polymer network and to enhance the water resistance of the resulting membranes. Thermal analysis confirmed the successful formation and integration of eutectic solvents within the polymer network. Rheological studies demonstrated the rubber-like behavior of the prepared hydrophobic eutectogels, with menthol-based variants exhibiting superior mechanical properties. Finally, sorption experiments were conducted using the optimized octanoic acid:menthol_PEGDA-HA eutectogel to evaluate its efficiency in removing various contaminants of emerging concern (CECs), including diclofenac, iopromide, cefazolin, bisphenol A, and dichlorophenol. The results revealed high sorption capacities for bisphenol A (3213 mg·kg-1) and dichlorophenol (2981 mg·kg-1), followed by diclofenac (1490 mg·kg-1), whereas minimal sorption capacities were observed for iopromide and cefazolin. Overall, this study demonstrates the potential of hydrophobic eutectogels as efficient and tunable materials for water purification, paving the way for their application in the environmental remediation of different emerging pollutants related to global change and human activities.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average