Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2025
License: CC BY
Data sources: ZENODO
ZENODO
Presentation . 2025
License: CC BY
Data sources: Datacite
ZENODO
Presentation . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying the energy balance between massive stars and ISM with MUSE and HST

Authors: Egorov, Oleg;

Quantifying the energy balance between massive stars and ISM with MUSE and HST

Abstract

Massive stars in star-forming regions inject huge amounts of energy and momentum into the ISM producing ubiquitous superbubbles, turbulent gas motions and outflows. The coupling efficiency of mechanical stellar feedback and its dependence on metallicity remains uncertain in simulations. The high angular and sufficient spectral resolution of MUSE allow one to characterize the small-scale (50-500 pc) ionized gas kinematics and quantify the energetics of the ISM. From the MUSE data, we identified about 1500 expanding superbubbles and regions with significant turbulent gas motions in 19 nearby star-forming galaxies from the PHANGS survey. Using the HST multi-wavelength observations, we linked these regions with the massive star clusters and measured the coupling efficiency of mechanical stellar feedback, directly from the observations. We found that the small-scale dynamics in the identified regions are mostly regulated by massive stars, with significant contribution of pre-SN feedback. The measured kinetic energy of the small-scale gas motions declines in the low-metallicity environment. Overall, our results demonstrate a synergy between the MUSE and space-based observatories like HST in quantifying the energy balance between the stars and gas in the nearby galaxies.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green