
doi: 10.20944/preprints202504.1534.v2 , 10.33774/coe-2025-s9m7d-v3 , 10.20944/preprints202504.1534.v4 , 10.2139/ssrn.5255890 , 10.20944/preprints202504.1534.v5 , 10.33774/coe-2025-s9m7d , 10.20944/preprints202504.1534.v1 , 10.33774/coe-2025-s9m7d-v2 , 10.20944/preprints202504.1534.v3 , 10.5281/zenodo.15459652 , 10.5281/zenodo.15368235 , 10.5281/zenodo.15367304 , 10.5281/zenodo.15366119 , 10.5281/zenodo.15427736 , 10.5281/zenodo.15505698 , 10.5281/zenodo.15199434 , 10.5281/zenodo.15392333 , 10.5281/zenodo.15199433 , 10.5281/zenodo.15330809 , 10.5281/zenodo.15399557 , 10.5281/zenodo.15815771 , 10.5281/zenodo.15824378 , 10.6084/m9.figshare.28792004 , 10.5281/zenodo.15333403 , 10.5281/zenodo.15748731 , 10.5281/zenodo.15200619 , 10.5281/zenodo.15481908 , 10.6084/m9.figshare.28792004.v1 , 10.5281/zenodo.15284466
doi: 10.20944/preprints202504.1534.v2 , 10.33774/coe-2025-s9m7d-v3 , 10.20944/preprints202504.1534.v4 , 10.2139/ssrn.5255890 , 10.20944/preprints202504.1534.v5 , 10.33774/coe-2025-s9m7d , 10.20944/preprints202504.1534.v1 , 10.33774/coe-2025-s9m7d-v2 , 10.20944/preprints202504.1534.v3 , 10.5281/zenodo.15459652 , 10.5281/zenodo.15368235 , 10.5281/zenodo.15367304 , 10.5281/zenodo.15366119 , 10.5281/zenodo.15427736 , 10.5281/zenodo.15505698 , 10.5281/zenodo.15199434 , 10.5281/zenodo.15392333 , 10.5281/zenodo.15199433 , 10.5281/zenodo.15330809 , 10.5281/zenodo.15399557 , 10.5281/zenodo.15815771 , 10.5281/zenodo.15824378 , 10.6084/m9.figshare.28792004 , 10.5281/zenodo.15333403 , 10.5281/zenodo.15748731 , 10.5281/zenodo.15200619 , 10.5281/zenodo.15481908 , 10.6084/m9.figshare.28792004.v1 , 10.5281/zenodo.15284466
We introduce a geometric and spectral reformulation of the Riemann Hypothesis based on the analysis of a complex vector-valued function, the Function of Residual Oscillation (FOR(N)), defined by a regularized spectral sum over the nontrivial zeros of the Riemann zeta function. This function reveals a torsion structure in the complex plane that is minimized under the critical-line condition Re(ρ) = 1/2. By analyzing the directional stability of the associated vectors, we demonstrate that the Riemann Hypothesis is equivalent to the global vanishing of the spectral torsion function τ(N). The approach combines geodesic vector dynamics, coherence cancellation, and asymptotic convergence, providing a new structural perspective on one of the most fundamental problems in mathematics.
Hilbert-Pólya, Physics, Zeta Function, Prime numbers, Math, Pure mathematics, Geometric Reformulation, Applied mathematics, Riemann Hypothesis, Atomic physics, Spectral Coherence, Mathematical model, Number theory, Mathematical physics, FOS: Mathematics, Riemann, Montgomery, Theoretical physics, Mathematics
Hilbert-Pólya, Physics, Zeta Function, Prime numbers, Math, Pure mathematics, Geometric Reformulation, Applied mathematics, Riemann Hypothesis, Atomic physics, Spectral Coherence, Mathematical model, Number theory, Mathematical physics, FOS: Mathematics, Riemann, Montgomery, Theoretical physics, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
