Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2025
License: CC BY
Data sources: ZENODO
ZENODO
Dataset . 2025
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combinatorial prediction of therapeutic perturbations using causally-inspired neural networks (chemical data)

Authors: Gonzalez, Guadalupe; Lin, Xiang; Herath, Isuru; Veselkov, Kirill; Bronstein, Michael; Zitnik, Marinka;

Combinatorial prediction of therapeutic perturbations using causally-inspired neural networks (chemical data)

Abstract

Dataset supporting "Combinatorial prediction of therapeutic targets using causally-inspired neural networks" (chemical data) Abstract: Phenotype-driven approaches identify disease-counteracting compounds by analyzing the phenotypic signatures that distinguish diseased from healthy states. Here, we introduce PDGrapher, a causally inspired graph neural network (GNN) designed to predict combinatorial perturbagens (sets of therapeutic targets) capable of reversing disease phenotypes. Unlike methods that learn how perturbations alter phenotypes, PDGrapher solves the inverse problem of directly predicting the perturbagens needed to achieve a desired response by embedding disease cell states into networks, learning a latent representation of these states, and identifying optimal combinatorial perturbations. In experiments in nine cell lines with chemical perturbations, PDGrapher identified effective perturbagens in more test samples than competing methods. It also demonstrates competitive performance on ten genetic perturbation datasets. An advantage of PDGrapher is its direct prediction paradigm, in contrast to the indirect and computationally intensive models traditionally employed in phenotype-driven research. This approach accelerates training by up to 25 times compared to existing methods, providing a fast approach for identifying therapeutic perturbations and advancing phenotype-driven drug discovery.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities