
Deploying Machine Learning (ML) models in the user plane enables low-latency and scalable in-network inference, but integrating them into programmable devices faces stringent constraints in terms of memory resources and computing capabilities. In this demo, we show how the newly proposed DUNE, a novel framework for distributed user-plane inference across multiple programmable network devices by automating the decomposition of large ML models into smaller sub-models, mitigates the limitations of traditional monolithic ML designs.We run experiments on a testbed with Intel Tofino switches using measurement data and show how DUNE not only improves the accuracy that the traditional single-device monolithic approach gets but also maintains a comparable per-switch latency.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
