Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adopter l'IA générative : défis et solutions à travers une grille de maturité organisationnelle

Adopting Generative AI: Challenges and Solutions Through an Organizational Maturity Framework
Authors: BERRICHI, Abdelouahed; EL AMMARI, Ali;

Adopter l'IA générative : défis et solutions à travers une grille de maturité organisationnelle

Abstract

Cet article explore les dynamiques de l’intelligence artificielle générative (IAG) dans le cadre de la transformation organisationnelle, en mettant en lumière les opportunités et les défis de son intégration. L’IAG, capable de générer des contenus autonomes (textes, images, analyses prédictives), redéfinit les processus décisionnels et les méthodes de travail, comme illustré par des applications telles qu’AlphaFold en santé ou MidJourney en marketing. Si des entreprises comme Google, Tesla, et Lockheed Martin intègrent rapidement l’IAG grâce à une culture d’innovation, des investissements massifs (ex. 75 milliards de dollars par Google en 2024), et des infrastructures avancées, d’autres secteurs, comme la santé et l’éducation publique, rencontrent des obstacles liés à des freins réglementaires, des craintes éthiques (ex. biais algorithmiques), et un déficit de compétences. L’article propose une grille de maturité organisationnelle en quatre niveaux (Débutant, Exploratoire, Avancé, Leader) pour évaluer la capacité des organisations à adopter l’IAG, et formule des leviers stratégiques – approche agile, expérimentation, gouvernance éthique – pour une intégration de l’IAG réussie. S’appuyant sur une approche analytique heuristique et un cadre théorique pluridisciplinaire, cette analyse offre un cadre conceptuel et opérationnel pour une adoption durable de l’IAG.

This article explores the dynamics of generative artificial intelligence (GAI) within the framework of organizational transformation, shedding light on the opportunities and challenges of its integration. GAI, capable of autonomously generating content (texts, images, predictive analyses), redefines decision-making processes and work methods, as exemplified by applications such as AlphaFold in healthcare and MidJourney in marketing. While companies like Google, Tesla, and Lockheed Martin rapidly adopt GAI, driven by a culture of innovation, substantial investments (e.g., Google’s $75 billion in 2024), and advanced infrastructure, other sectors, such as healthcare and public education, face barriers due to regulatory constraints, ethical concerns (e.g., algorithmic bias), and a lack of skills. The article proposes an organizational maturity framework with four levels (Beginner, Exploratory, Advanced, Leader) to assess organizations’ readiness for GAI integration, and outlines strategic levers – agile approaches, experimentation, and ethical governance – to ensure successful adoption. Grounded in a heuristic analytical approach and a multidisciplinary theoretical framework, this analysis provides a conceptual and operational framework for sustainable GAI adoption.

Related Organizations
Keywords

Intelligence artificielle générative, transformation organisationnelle, maturité organisationnelle, intégration de l'IAG, leviers stratégiques., MCAFR

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Upload OA version
Are you the author? Do you have the OA version of this publication?