Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Other literature type . 2025
License: CC BY
Data sources: Datacite
ZENODO
Other literature type . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

ENHANCING VIDEO FORGERY DETECTION WITH DEEP CONVOLUTIONAL NEURAL NETWORKS

Authors: ADVANCED RESEARCH AND INNOVATIONS JOURNAL;

ENHANCING VIDEO FORGERY DETECTION WITH DEEP CONVOLUTIONAL NEURAL NETWORKS

Abstract

A lot of people are worried about video forgeries and how they could affect digital forensics, media integrity, and security because of how sophisticated editing tools are getting. Because subtle changes are so hard to spot using conventional detection methods, it is a demanding undertaking. The primary goal of this paper is to examine how Deep Convolutional Neural Networks (DCNN) can improve video counterfeit detection. With the help of deep learning techniques, the proposed model can detect cases of deepfake changes, splicing, and frame tampering with a remarkable degree of accuracy. Results from the experiments indicate that deep convolutional neural networks (DCNN) outperform more traditional approaches, which could make them valuable in forensic investigations.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!