Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/wacvw6...
Article . 2025 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving the Perturbation-Based Explanation of Deepfake Detectors Through the Use of Adversarially-Generated Samples

Authors: Tsigos, Konstantinos; Apostolidis, Evlampios; Mezaris, Vasileios;

Improving the Perturbation-Based Explanation of Deepfake Detectors Through the Use of Adversarially-Generated Samples

Abstract

In this paper, we introduce the idea of using adversarially-generated samples of the input images that were classified as deepfakes by a detector, to form perturbation masks for inferring the importance of different input features and produce visual explanations. We generate these samples based on Natural Evolution Strategies, aiming to flip the original deepfake detector's decision and classify these samples as real. We apply this idea to four perturbation-based explanation methods (LIME, SHAP, SOBOL and RISE) and evaluate the performance of the resulting modified methods using a SOTA deepfake detection model, a benchmarking dataset (FaceForensics++) and a corresponding explanation evaluation framework. Our quantitative assessments document the mostly positive contribution of the proposed perturbation approach in the performance of explanation methods. Our qualitative analysis shows the capacity of the modified explanation methods to demarcate the manipulated image regions more accurately, and thus to provide more useful explanations.

Keywords

FOS: Computer and information sciences, Computer Science - Cryptography and Security, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green