
In the rapidly evolving digital landscape, cyber threats have become increasingly sophisticated, necessitating advanced threat intelligence systems. Artificial Intelligence (AI) has emerged as a pivotal technology in cybersecurity, enabling predictive models that enhance adaptive IT defense mechanisms. This paper explores AI-driven threat intelligence systems, detailing their architecture, methodologies, and applications in mitigating cyber threats. We discuss machine learning (ML) and deep learning (DL) models in predictive cybersecurity, real-time threat detection, and automated response systems. Furthermore, we address the challenges, ethical considerations, and future trends in AI-powered cybersecurity. Additionally, we examine the role of AI in securing Android platforms, the significance of AI-driven security for Software Developers, and how Java-based security frameworks contribute to robust cyber defense strategies.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
