Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Presentation . 2025
License: CC BY
Data sources: Datacite
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Digital Humanities and Generative AI: yet another methodological turn?

Authors: Ciotti, Fabio;

Digital Humanities and Generative AI: yet another methodological turn?

Abstract

L'introduzione dei sistemi di intelligenza artificiale generativa (AI), in particolare i grandi modelli linguistici (LLM), sta ridefinendo l’assetto metodologico delle Digital Humanities. Il suo impatto va oltre le applicazioni pratiche, e riguarda in primo luogo le basi epistemologiche del campo, aprendo nuove frontiere di ricerca. Le Digital Humanities hanno tradizionalmente favorito un approccio metodologico fondato su formalizzazione e modellazione esplicite dei concetti teorici e dei workflow. La IA generativa invece si basa su metodi induttivi, probabilistici e sub-simbolici. Cattura e modella le strutture implicite di significato che si trovano all'interno di vasti insiemi di dati culturali, rappresentandoli come spazi vettoriali multidimensionali e continui. Questo paradigma sembra più adatto ad affrontare la complessità dei fenomeni culturali, che spesso resistono a una formalizzazione esplicita. I LLM, in particolare, implementano, almeno parzialmente, i processi interpretativi alla base della comprensione delle dinamiche culturali, separando questi processi dalla dimensione soggettiva umana delle metodologie ermeneutiche tradizionali. Questo cambiamento epistemologico non solo apre nuove strade di ricerca, ma presenta anche sfide significative. La comunità delle Digital Humanities ha il compito di definire una nuova agenda di ricerca che tenga conto di questi cambiamenti, definendo le linee di indagine fondamentali. Questo intervento intende contribuire a questo sforzo di definizione dell'agenda: 1) esplorando come i LLM e altri sistemi di intelligenza artificiale generativa possano essere concettualizzati e compresi a livello teorico; 2) identificando potenziali aree di indagine negli studi computazionali e digitali dei fenomeni culturali; 3) illustrando alcuni casi di studio all'interno del sottocampo degli studi letterari computazionali. La registrazione della presentazione è disponibile a: https://zenodo.org/uploads/15069064 e https://www.saw-leipzig.de/2025-ciotti

Generative Artificial Intelligence (AI), particularly Large Language Models (LLMs), is redefining the boundaries and methodologies of Digital Humanities. Its impact extends beyond practical applications, challenging the epistemological foundations of the field while opening new research frontiers. Unlike the explicit formalization and modeling of theoretical concepts and analytical workflows typical of Digital Humanities, generative AI relies on inductive, probabilistic, and sub-symbolic methods. It captures and models implicit structures of meaning found within vast cultural datasets, representing them as multidimensional and continuous vector spaces. This paradigm appears more adept at addressing the complexity of cultural phenomena, which often resist explicit formalization. LLMs, in particular, partially implement interpretative processes that underlie the comprehension of cultural dynamics, decoupling these processes from the subjective human dimension traditionally tied to hermeneutic methodologies. This epistemological shift not only opens up new avenues of research but also presents significant challenges. The Digital Humanities community is tasked with defining a new research agenda that accommodates these changes, setting out fundamental lines of inquiry. This talk aims to contribute to this agenda-setting effort by 1) exploring how LLMs and other generative AI systems can be theoretically conceptualized and understood; 2) identifying potential areas of investigation in computational and digital studies of cultural phenomena; 3) illustrating some case studies within the subfield of computational literary studies. The recording of the lecture is available here: https://zenodo.org/uploads/15069064 and https://www.saw-leipzig.de/2025-ciotti

Related Organizations
Keywords

Digital Humanities, Large Language Models, 2025, AI, Methodology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!