Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Preprint . 2018
License: CC BY NC SA
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

What are the benefits and risks of gene drives for population management and conservation biology?

Authors: Nicolas O. Rode; Arnaud Estoup; Denis Bourguet; Virginie Courtier-Orgogozo; Florence Débarre;

What are the benefits and risks of gene drives for population management and conservation biology?

Abstract

Gene drive has recently been proposed as a promising technology for population management, including in conservation genetics; it is based on the release of genetically engineered individuals designed to rapidly propagate a desired mutation or transgene to high frequencies in wild populations. Potential applications in conservation biology include the control of invasive pest populations that threaten biodiversity (eradication and suppression drives), or the introduction of beneficial mutations in endangered populations (rescue drives). We examine the challenges posed by the evolution of resistance to gene drives and review the various environmental risks associated with gene drives. Contrary to suppression and eradication drives, the evolution of resistance should not prevent the fixation of rescue drives, while countermeasures to stop their spread are likely to fail. For eradication and suppression drives, minimizing the chances of resistance evolution requires targeting genes whose sequences have low polymorphism in natural populations (e.g. that are functionally constrained), which might however increase the odds of gene drive propagation to non-target populations/species. Conversely, targeting sequences that are present in the target population/species, but absent in non-target populations/species, might increase the odds of resistance evolution due to the introgression of resistant alleles from non-target populations/species. Once a gene drive has fixed in a target population, the time it persists before being inactivated by mutations influences its risk of spread to non-target populations/species. Finally, ethical values along with a clear regulatory framework for risk assessment should guide gene drive research.

Funding for this project was provided by the CeMEB LabEx/University of Montpellier to NOR, ANR-14-ACHN-0003 to FD, INRA to AE and DB, INRA-SPE (SUZUCTICID project) to NOR and AE and European Research Council (FP7/2007-2013 Grant Agreement no. 337579) to VCO.

Keywords

genetic rescue, conservation genetics, assisted gene flow, genetic population management, endangered species, invasive species

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 17
    download downloads 3
  • 17
    views
    3
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
17
3
Green
Related to Research communities
Italian National Biodiversity Future Center