Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Presentation . 2025
License: CC BY
Data sources: Datacite
ZENODO
Presentation . 2024
License: CC BY
Data sources: Datacite
ZENODO
Presentation . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Building FAIR image analysis pipelines for high-content-screening (HCS) data using Galaxy

Authors: Massei, Riccardo; Berndt, Matthias; Lopez-Delisle, Lucille; Serrano-Solano, Beatriz; Busch, Wibke; Scholz, Stefan; Bohring, Hannes; +3 Authors

Building FAIR image analysis pipelines for high-content-screening (HCS) data using Galaxy

Abstract

Imaging is crucial across various scientific disciplines, particularly in life sciences, where it plays a key role in studies ranging from single molecules to whole organisms. However, the complexity and sheer volume of image data, especially from high-content screening (HCS) experiments involving cell lines or other organisms, present significant challenges. Managing and analysing this data efficiently requires well-defined image processing tools and analysis pipelines that align with the FAIR principles—ensuring they are findable, accessible, interoperable, and reusable across different domains. In the frame of NFDI4BioImaging (the National Research Data Infrastructure focusing on bioimaging in Germany), we want to find viable solutions for storing, processing, analysing, and sharing HCS data. In particular, we want to develop solutions to make findable and machine-readable metadata using (semi)automatic analysis pipelines. In scientific research, such pipelines are crucial for maintaining data integrity, supporting reproducibility, and enabling interdisciplinary collaboration. These tools can be used by different users to retrieve images based on specific attributes as well as support quality control by identifying appropriate metadata. Galaxy, an open-source, web-based platform for data-intensive research, offers a solution by enabling the construction of reproducible pipelines for image analysis. By integrating popular analysis software like CellProfiler and connecting with cloud services such as OMERO and IDR, Galaxy facilitates the seamless access and management of image data. This capability is particularly valuable in bioimaging, where automated pipelines can streamline the handling of complex metadata, ensuring data integrity and fostering interdisciplinary collaboration. This approach not only increases the efficiency of HCS bioimaging but also contributes to the broader scientific community's efforts to embrace FAIR principles, ultimately advancing scientific discovery and innovation. In the present study, we proposed an automated analysis pipeline for storing, processing, analysing, and sharing HCS bioimaging data. The (semi)automatic workflow was developed by taking as a case study a dataset of zebrafish larvae and cell lines images previously obtained from an automated imaging system generating data in an HCS fashion. In our workflows, images are automatically enriched with metadata (i.e. key-value pairs, tags, raw data, regions of interest) and uploaded to the UFZ-OME Remote Objects (OMERO) server using a novel OMERO tool suite developed with GALAXY. Workflows give the possibility to the user to intuitively fetch images from the local server and perform image analysis (i.e. annotation) or even more complex toxicological analyses (dose response modelling). Furthermore, we want to improve the FAIRness of the protocol by adding a direct upload link to the Image Data Resource (IDR) repository to automatically prepare the data for publication and sharing.

Keywords

OMERO, NFDI4BIOIMAGE, workflow, metadata, RDM, imaging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!