<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This paper proposes a Model-Based Online Learning (MBOL) framework for waveform optimization in integrated sensing and communications (ISAC) systems. In particular, the MBOL framework is proposed to enhance the ISAC performance under dynamic environmental conditions. Unlike Model-Free Online Learning (MFOL) methods, our approach leverages a rich structural knowledge of sensing, communications, and radio environments, offering better explainability and sample efficiency. This paper establishes a theoretical analysis of the proposed class of MBOL methods, showing essential performance conditions and convergence rates. This theoretical analysis is critical for understanding the potential of MBOL in active waveform optimization tasks. We demonstrate the proposed MBOL framework in multicarrier ISAC systems, focusing on the sub-carrier selection and power allocation problem. Via numerical experiments, we show that the proposed MBOL method outperforms the MFOL method in terms of sample efficiency. The results underline the potential of MBOL for improving the active waveform optimization performance in ISAC systems, particularly when sample efficiency and explainability are critical.
Publisher Copyright: Authors
Peer reviewed
Joint radar-communications systems, reinforcement learning, Radar, Sensors, Resource management, joint radar-communications systems, resource allocation, online convex optimization, Markov decision processes, waveform optimization, Task analysis, Interference, Signal processing algorithms, model-based learning
Joint radar-communications systems, reinforcement learning, Radar, Sensors, Resource management, joint radar-communications systems, resource allocation, online convex optimization, Markov decision processes, waveform optimization, Task analysis, Interference, Signal processing algorithms, model-based learning
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |