Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2025
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low-Cost and Comprehensive Non-textual Input Fuzzing with LLM-Synthesized Input Generators

Authors: Zhang, Kunpeng; Li, Zongjie; Wu, Daoyuan; Wang, Shuai; Xia, Xin;

Low-Cost and Comprehensive Non-textual Input Fuzzing with LLM-Synthesized Input Generators

Abstract

Modern software often accepts inputs with highly complex grammars. Recent advances in large language models (LLMs) have shown that they can be used to synthesize high-quality natural language text and code that conforms to the grammar of a given input format. Nevertheless, LLMs are often incapable or too costly to generate non-textual outputs, such as images, videos, and PDF files. This limitation hinders the application of LLMs in grammar-aware fuzzing. We present a novel approach to enabling grammar-aware fuzzing over non-textual inputs. We employ LLMs to synthesize and also mutate input generators, in the form of Python scripts, that generate data conforming to the grammar of a given input format. Then, non-textual data yielded by the input generators are further mutated by traditional fuzzers (AFL++) to explore the software input space effectively. Our approach, namely G2FUZZ, features a hybrid strategy that combines a holistic search driven by LLMs and a local search driven by industrial quality fuzzers. Two key advantages are: (1) LLMs are good at synthesizing and mutating input generators and enabling jumping out of local optima, thus achieving a synergistic effect when combined with mutation-based fuzzers; (2) LLMs are less frequently invoked unless really needed, thus significantly reducing the cost of LLM usage. We have evaluated G2FUZZ on a variety of input formats, including TIFF images, MP4 audios, and PDF files. The results show that G2FUZZ outperforms SOTA tools such as AFL++, Fuzztruction, and FormatFuzzer in terms of code coverage and bug finding across most programs tested on three platforms: UNIFUZZ, FuzzBench, and MAGMA.

USENIX Security 2025

Keywords

Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green