Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/srds60...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
ZENODO
Presentation . 2023
License: CC BY
Data sources: Datacite
ZENODO
Presentation . 2023
License: CC BY
Data sources: Datacite
ZENODO
Conference object . 2023
License: CC BY
Data sources: Datacite
ZENODO
Conference object . 2023
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FreSh: A Lock-Free Data Series Index

Authors: Fatourou, Panagiota; Kosmas, Eleftherios; Palpanas, Themis; Paterakis, George;

FreSh: A Lock-Free Data Series Index

Abstract

Presentation slides of the paper of the same name. We present FreSh, a lock-free data series index that exhibits good performance (while being robust). FreSh is based on Refresh, which is a generic approach we have developed for supporting lock-freedom in an efficient way on top of any locality-aware data series index. We believe Refresh is of independent interest and can be used to get well-performed lock-free versions of other locality-aware blocking data structures. For developing FreSh, we first studied in depth the design decisions of current state-of-the-art data series indexes, and the principles governing their performance. This led to a theoretical framework, which enables the development and analysis of data series indexes in a modular way. The framework allowed us to apply Refresh, repeatedly, to get lock-free versions of the different phases of a family of data series indexes. Experiments with several synthetic and real datasets illustrate that FreSh achieves performance that is as good as that of the state-of-the-art blocking in-memory data series index. This shows that the helping mechanisms of FreSh are light-weight, respecting certain principles that are crucial for performance in locality-aware data structures. This paper was published in SRDS 2023.

Keywords

FOS: Computer and information sciences, Data structures, parallel processing, F.2, lock free index, Databases (cs.DB), Indexes, E.1; F.2, multicore processing, buildings, Reliability engineering, Multicore processing, data structures, indexes, Computer Science - Databases, Computer Science - Distributed, Parallel, and Cluster Computing, Parallel processing, reliability engineering, Distributed, Parallel, and Cluster Computing (cs.DC), data series index, E.1, Buildings

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green