Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Dataset . 2025
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data and Code associated to the paper "Roughening dynamics of interfaces in two-dimensional quantum matter"

Authors: Krinitsin, Wladislaw; Tausendpfund, Niklas; Rizzi, Matteo; Heyl, Markus; Markus, Schmitt;

Data and Code associated to the paper "Roughening dynamics of interfaces in two-dimensional quantum matter"

Abstract

The properties of interfaces are key to understand the physics of matter. However, the study of quantum interface dynamics has remained an outstanding challenge. Here, we use large-scale Tree Tensor Network simulations to identify the dynamical signature of an interface roughening transition within the ferromagnetic phase of the 2D quantum Ising model. For initial domain wall profiles we find extended prethermal plateaus for smooth interfaces, whereas above the roughening transition the domain wall decays quickly. Our results can be readily explored experimentally in Rydberg atomic systems.

This dataset includes all measurements from the TTN, DMRG, VUMPS and QMC simulation necessary to reproduce the figures presented in the main publication. It also contains the files used for produceing the figures. In addition, we include all Julia files to reproduce the results of the publication, excluding the TTN data. A detailed describition and how to start the simulation is given in the README.md file. The obtained wavefunction's are not part of this dataset, since they exceed the allowed 50Gb. In case of interest, please contact the authors to gain access.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average