
ABSTRACTThe asynchronous evolution of tests and code can compromise software quality and project longevity. To investigate the impact of test and production code co‐evolution, this study analyzes a large‐scale dataset of 526 GitHub repositories written in six programming languages: JavaScript, TypeScript, Java, Python, PHP, and C#. We focus on understanding how tests evolve throughout the software lifecycle and the frequency with which production and test code evolve in sync. By applying clustering algorithms and Pearson's correlation coefficient, we identify different patterns of test co‐evolution between projects. We found a significant correlation between high test co‐evolution and smaller development teams but no significant relationship with the frequency of different maintenance activities (corrective, adaptive, perfective, or multi). Despite this, we identified five distinct test evolution patterns, highlighting diverse approaches to integrating testing practices. This work provides valuable insights into the dynamics of test co‐evolution and its correlation in software maintainability.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
