Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Software ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Software Evolution and Process
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
https://doi.org/10.22541/au.17...
Article . 2024 . Peer-reviewed
Data sources: Crossref
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

Test Co‐Evolution in Software Projects: A Large‐Scale Empirical Study

Authors: Miranda, Charles; Avelino, Guilherme; Neto, Pedro Santos;

Test Co‐Evolution in Software Projects: A Large‐Scale Empirical Study

Abstract

ABSTRACTThe asynchronous evolution of tests and code can compromise software quality and project longevity. To investigate the impact of test and production code co‐evolution, this study analyzes a large‐scale dataset of 526 GitHub repositories written in six programming languages: JavaScript, TypeScript, Java, Python, PHP, and C#. We focus on understanding how tests evolve throughout the software lifecycle and the frequency with which production and test code evolve in sync. By applying clustering algorithms and Pearson's correlation coefficient, we identify different patterns of test co‐evolution between projects. We found a significant correlation between high test co‐evolution and smaller development teams but no significant relationship with the frequency of different maintenance activities (corrective, adaptive, perfective, or multi). Despite this, we identified five distinct test evolution patterns, highlighting diverse approaches to integrating testing practices. This work provides valuable insights into the dynamics of test co‐evolution and its correlation in software maintainability.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid