Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Model . 2024
License: CC BY
Data sources: Datacite
ZENODO
Model . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Model code associated with: Population response to extreme climate events depends on population spatial distribution

Authors: Torstenson, Martha; Shaw, Allison K;

Model code associated with: Population response to extreme climate events depends on population spatial distribution

Abstract

This contains model code associated with the paper titled Population response to extreme climate events depends on population spatial distribution Torstenson MS, Shaw AK Extreme climate events, which are increasing in frequency and severity with climate change, can cause mass mortality events in animal populations. Meanwhile, populations of migratory animals around the world are in decline. We illustrate how the spatial aggregation typical in many migratory populations can increase the likelihood of population declines in response to extreme climate events. First, we demonstrate that high levels of spatial aggregation make it possible for higher levels of population mortality to result from spatially limited disturbances. This aligns with observations of mass mortality events due to extreme climate events in migratory animal populations. We go on to use a flow-kick model to demonstrate that because higher levels of spatial aggregation result in less frequent, but more severe impacts, population crashes in response to extreme events are more likely in highly aggregated populations. This provides a mechanism by which migratory populations may be especially vulnerable to climate change. We quantify what regimes of disturbance (with respect to frequency and severity) lead to population collapse versus resilience, and we show how our results depend on the form of disturbance (proportional vs density-dependent). Finally, we compare results from an analytic approximation with those from a simulation and discuss differences. The results of our model can also be used to understand the interacting effects of shifting extreme climate event regimes and land use change. We predict that land use changes that increase the spatial aggregation of populations, such as habitat destruction or degradation of habitat corridors, will increase the likelihood of population declines due to extreme climate events. Conservation plans that increase the dispersion of populations across the landscape may increase population resilience to changing extreme climate event regimes.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average