Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2024
License: CC BY
Data sources: ZENODO
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PREDICTIVE ANALYTICS IN CRYPTO TRADING: MACHINE LEARNING'S NEW FRONTIER

Authors: 1Idriss Guedi, 2Tamer Youssef & 3Mbonigaba Celestin;

PREDICTIVE ANALYTICS IN CRYPTO TRADING: MACHINE LEARNING'S NEW FRONTIER

Abstract

This research explores the application of machine learning (ML) in predicting cryptocurrency price movements, focusing on enhancing predictive accuracy to support informed trading decisions in volatile markets. Employing a quantitative methodology, historical price data and real-time indicators were analyzed using Long Short-Term Memory (LSTM) networks, Support Vector Machines (SVM), and Random Forest (RF) models. LSTM networks outperformed other models with an 88% accuracy rate for Bitcoin, owing to their ability to retain temporal patterns crucial for crypto market predictions. RF and SVM, achieving accuracies of 85% and 82%, respectively, demonstrated balanced performance with lower computational demands. Integrating social media sentiment data further improved model precision by up to 6%, underscoring the importance of non-traditional data sources. Recommendations include prioritizing LSTM for high-volatility assets, utilizing RF for cost-effective applications, and incorporating sentiment data to enhance model robustness. This study demonstrates the utility of ML models in navigating crypto market complexities, offering adaptive tools for traders.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green