Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Other literature type . 2024
License: CC BY
Data sources: Datacite
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Resistance Awakens: Natural diversity informs engineering of plant immune receptors at the DNA, RNA, and protein levels

Authors: Sutherland, Chandler; Stevens, Danielle M; Seong, Kyungyong; Wei, Wei; Krasileva, Ksenia;

The Resistance Awakens: Natural diversity informs engineering of plant immune receptors at the DNA, RNA, and protein levels

Abstract

Plants rely on germline-encoded, innate immune receptors to sense pathogens and initiate the defense response. The exponential increase in quality and quantity of genomes, RNA-seq datasets, and protein structures has underscored the incredible diversity of plant immunity. Arabidopsis continues to serve as a valuable model and the theoretical foundation of our understanding of wild plant diversity of immune receptors, but expansion of study into agricultural crops has also revealed distinct evolutionary trajectories and challenges. Here, we provide the classical context for study of both intracellular nucleotide-binding, leucine-rich repeat receptors (NLRs) and surface-localized pattern recognition receptors (PRRs) at the levels of the DNA sequences, transcriptional regulation, and protein structures. We then examine how recent technology has shaped our understanding of immune receptor evolution and informed our ability to efficiently engineer resistance. We summarize current literature and provide an outlook on how researchers take inspiration from natural diversity in bioengineering efforts for disease resistance in crops. This work has been submitted to The Plant Cell as an invited review for the special focus issue “Translational Research from Arabidopsis to Crop Plants and Beyond”.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!