
Ontology learning (OL) from unstructured data has evolved significantly, with recent advancements integrating large language models (LLMs) to enhance various aspects of the process. The LLMs4OL 2024 datasets, were developed to benchmark and advance research in OL using LLMs. This dataset as a key component of the LLMs4OL Challenge, targets three primary OL tasks: Term Typing, Taxonomy Discovery, and Non-Taxonomic Relation Extraction. It encompasses seven domains, i.e. lexosemantics and biological functions, offering a comprehensive resource for evaluating LLM-based OL approaches Each task within the dataset is carefully crafted to facilitate both Few-Shot (FS) and Zero-Shot (ZS) evaluation scenarios, allowing for robust assessment of model performance across different knowledge domains to address a critical gap in the field by offering standardized benchmarks for fair comparison for evaluating LLM applications in OL.
Large Language Models, LLMs4OL 2024, Ontology Learning, Dataset, LLMs4OL Challenge
Large Language Models, LLMs4OL 2024, Ontology Learning, Dataset, LLMs4OL Challenge
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
