<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
ABSTRACT Data mining has as goal to extract knowledge from large databases. To extract this knowledge, a database may be considered as a large search space, and a mining algorithm as a search strategy. In general, a search space consists of an enormous number of elements, making an exhaustive search infeasible. Therefore, efficient search strategies are of vital importance. Search strategies based on genetic-based algorithms have been applied successfully in a wide range of applications. A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution. This heuristic is routinely used to generate useful solutions to optimization and search problems. In this paper, we discuss the suitability of genetic-based algorithms for data mining. We discuss the various application areas where genetic Algorithm plays evolutionary role with data mining technique and explain them indetails.Keywords: Genetic Algorithm, data mining, IOT.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |