Downloads provided by UsageCounts
P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute. This question was first mentioned in a letter written by John Nash to the National Security Agency in 1955. A precise statement of the P versus NP problem was introduced independently in 1971 by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. To attack the P versus NP question the concept of NP-completeness has been very useful. If any single NP-complete problem can be solved in polynomial time, then every NP problem has a polynomial time algorithm. MONOTONE 3SAT is a known NP-complete problem. We prove MONOTONE 3SAT is in P. In this way, we demonstrate the P versus NP problem.
Completeness, Complexity Classes, 3SAT, Polynomial Time, Quadratic Residue
Completeness, Complexity Classes, 3SAT, Polynomial Time, Quadratic Residue
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 14 | |
| downloads | 4 |

Views provided by UsageCounts
Downloads provided by UsageCounts