Downloads provided by UsageCounts
The potential outcomes framework often uses one or more parametric outcome models to learn about underlying causal processes. In Stan, parameter estimation using observed data takes place in the model block, while simulation-based estimation of causal parameters using the g-formula can be done separately with generated quantities. Bayesian estimation allows for data-driven sensitivity analysis regarding the assumption of no unmeasured confounding. This presentation shows some simple causal models, then outlines a basic sensitivity analysis using prior information derived from an external data source.
Code and data available at github.com/stan-dev/stancon_talks
StanCon, Bayesian Data Analysis, Stan
StanCon, Bayesian Data Analysis, Stan
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 41 | |
| downloads | 19 |

Views provided by UsageCounts
Downloads provided by UsageCounts