Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2024
License: CC BY
Data sources: ZENODO
ZENODO
Software . 2024
License: CC BY
Data sources: Datacite
ZENODO
Software . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predicted Losses of Sulfur and Selenium in European Soils Using Machine Learning: Python Script

Authors: Insinga, Logan; Droz, Boris; Jones, Gerrad;

Predicted Losses of Sulfur and Selenium in European Soils Using Machine Learning: Python Script

Abstract

This repository contains Python machine learning regression scripts that support the publication titled "Predicted Losses of Sulfur and Selenium in European Soils Using Machine Learning: A Call for Prudent Model Interrogation and Selection" Paper Abstract: Reductions in sulfur (S) atmospheric deposition in recent decades have been attributed to S deficiencies in crops. Similarly, global soil selenium (Se) concentrations were predicted to drop, particularly in Europe, due to increases in leaching attributed to increases in aridity. Given its international importance in agriculture, reductions of essential elements, including S and Se, in European soils could have important impacts on nutrition and human health. Our objectives were to model current soil S and Se levels in Europe and predict concentrations changes for the 21st century. We interrogated four machine-learning (ML) techniques, but after critical evaluation, only outputs for linear support vector regression (Lin-SVR) models for S and Se and the multilayer perceptron model (MLP) for Se were consistent with known mechanisms reported in literature. Other models exhibited overfitting even when differences in training and testing performance were low or non-existent. Furthermore, our results highlight that similarly performing models based on RMSE or R2 can lead to drastically different predictions and conclusions, thus highlighting the need to interrogate machine learning models and to ensure they are consistent with known mechanisms reported in the literature. Both elements exhibited similar spatial patterns with predicted gains in Scandinavia versus losses in the central and Mediterranean regions of Europe, respectively, by the end of the 21st century for an extreme climate scenario. The median change was -5.5% for S (Lin-SVR) and -3.5% (MLP) and -4.0% (Lin-SVR) for Se. For both elements, modeled losses were driven by decreases in soil organic carbon, S and Se atmospheric deposition, and gains were driven by increases in evapotranspiration.

Related Organizations
Keywords

Machine learning, trace element, regression

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average