<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Machine-Actionable Ancient Text (MAAT) Corpus is a new resource providing training and evaluation data for restoring lacunae in ancient Greek, Latin, and Coptic texts. Current text restoration systems require large amounts of data for training and task-relevant means for evaluation. The MAAT Corpus addresses this need by converting texts available in EpiDoc XML format into a machine-actionable format that preserves the most textually salient aspects needed for machine learning: the text itself, unclear letters, restorations, and lacunae. Structured test cases are generated from the corpus that align with the actual text restoration task performed by papyrologists and epigraphist, enabling more realistic evaluation than the synthetic tasks used previously. The initial 1.0 beta release contains approximately 134,000 text editions, 178,000 text blocks, and 750,000 individual restorations, with Greek and Latin predominating. This corpus aims to facilitate the development of computational methods to assist scholars in accurately restoring ancient texts.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |