Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison between 16S rRNA and shotgun sequencing in colorectal cancer, advanced colorectal lesions, and healthy human gut microbiota

Dataset
Authors: Institut Català d'Oncologia (ICO). Programa d'Anàlisi de Dades Oncològiques (PADO);

Comparison between 16S rRNA and shotgun sequencing in colorectal cancer, advanced colorectal lesions, and healthy human gut microbiota

Abstract

Background: Gut dysbiosis has been associated with colorectal cancer (CRC), the third most prevalent cancer in the world. This study compares microbiota taxonomic and abundance results obtained by 16S rRNA gene sequencing (16S) and whole shotgun metagenomic sequencing to investigate their reliability for bacteria profiling. The experimental design included 156 human stool samples from healthy controls, advanced (high-risk) colorectal lesion patients (HRL), and CRC cases, with each sample sequenced using both 16S and shotgun methods. We thoroughly compared both sequencing technologies at the species, genus, and family annotation levels, the abundance differences in these taxa, sparsity, alpha and beta diversities, ability to train prediction models, and the similarity of the microbial signature derived from these models. Results: As expected, the results showed that 16S detects only part of the gut microbiota community revealed by shotgun, although some genera were only profiled by 16S. The 16S abundance data was sparser and exhibited lower alpha diversity. In lower taxonomic ranks, shotgun and 16S highly differed, partially due to a disagreement in reference databases. When considering only shared taxa, the abundance was positively correlated between the two strategies. We also found a moderate correlation between the shotgun and 16S alpha-diversity measures, as well as their PCoAs. Regarding the machine learning models, only some of the shotgun models showed some degree of predictive power in an independent test set, but we could not demonstrate a clear superiority of one technology over the other. Microbial signatures from both sequencing techniques revealed taxa previously associated with CRC development, e.g., Parvimonas micra. Conclusions: Shotgun and 16S sequencing provide two different lenses to examine microbial communities. While we have demonstrated that they can unravel common patterns (including microbial signatures), shotgun often gives a more detailed snapshot than 16S, both in depth and breadth. Instead, 16S will tend to show only part of the picture, giving greater weight to dominant bacteria in a sample. Therefore, we recommend choosing one or another sequencing technique before launching a study. Specifically, shotgun sequencing is preferred for stool microbiome samples and in-depth analyses, while 16S is more suitable for tissue samples and studies with targeted aims. 

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Cancer Research