Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.23919/eusip...
Article . 2024 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Towards Optimal Trade-Offs in Knowledge Distillation for CNNs and Vision Transformers at the Edge

Authors: Violos, John; Papadopoulos, Symeon; Kompatsiaris, Ioannis (Yiannis);

Towards Optimal Trade-Offs in Knowledge Distillation for CNNs and Vision Transformers at the Edge

Abstract

This paper discusses four facets of the Knowledge Distillation (KD) process for Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) architectures, particularly when executed on edge devices with constrained processing capabilities. First, we conduct a comparative analysis of the KD process between CNNs and ViT architectures, aiming to elucidate the feasibility and efficacy of employing different architectural configurations for the teacher and student, while assessing their performance and efficiency. Second, we explore the impact of varying the size of the student model on accuracy and inference speed, while maintaining a constant KD duration. Third, we examine the effects of employing higher resolution images on the accuracy, memory footprint and computational workload. Last, we examine the performance improvements obtained by fine-tuning the student model after KD to specific downstream tasks. Through empirical evaluations and analyses, this research provides AI practitioners with insights into optimal strategies for maximizing the effectiveness of the KD process on edge devices.

Keywords

FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green