Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Project deliverable . 2018
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Project deliverable . 2018
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Meso– and multi–scale modelling E-CAM modules II

Authors: Duenweg, Burkhard; Jony Castagna; Chiacchiera, Silvia; Kobayashi, Hideki; Krekeler, Christian;

Meso– and multi–scale modelling E-CAM modules II

Abstract

In this report for Deliverable 4.3 of E-CAM, nine software modules in meso– and multi–scale modelling are presented. Two of the modules have been implemented in DL_MESO_DPD: • Multi GPU version of the DL_MESO_DPD code • Using SIONlib (parallel I/O library) to write/read HISTORY files in DL_MESO_DPD. Furthermore, there are five modules that have been implemented in ESPResSo++. Together they form an implementation of a novel hierarchical strategy to generate equilibrium structures of polymer melts: • Coarse-Graining • Fine-Graining • Reinsertion • Feedback Control Mechanism • Constrain-gyration radius. Finally, two modules applying the grand canonical adaptive resolution scheme (GC-AdResS) have been developed, implemented and tested in/with GROMACS 5.1.0. The GC-AdResS scheme is implemented in several MD packages, with GROMACS 5.1.0 as an example for a very complex one. The modules provide a recipe to simplify the implemen- tation and to make it more general and easier to implement into other codes. • Abrupt-GC-AdResS • Abrupt-AdResS_forcecap A manual explaining the use of GC-AdResS implemented in GROMACS is also presented here, as supporting information. A short description is written for each module, followed by a link to the respective Merge-Request on the GitLab service of E-CAM. These merge requests contain detailed information about the code development, testing and documentation of the modules.

Keywords

E-CAM, CECAM, Module, DL_MESO_DPD, ESPResSo++, GC-AdResS, GPU, DPD, dipole moments, polymer melts, equilibration, coarse–graining

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 8
    download downloads 10
  • 8
    views
    10
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
8
10
Green
Funded by