
In this work, we propose a method of optimising stellarator devices to favour the presence of an electron root solution of the radial electric field. Such a solution can help avoid heavy impurity accumulation, improve neoclassical thermal ion confinement and helium ash exhaust, and possibly reduce turbulence. This study shows that an optimisation for such a root is possible in quasi-isodynamic stellarators. Examples are shown for both vacuum and finite plasma pressure configurations.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
