Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Serial block-face scanning electron microscopy of adherent cells on thin plastic substrate – Data set 05

Authors: Kauter, Anne; Laue, Michael;

Serial block-face scanning electron microscopy of adherent cells on thin plastic substrate – Data set 05

Abstract

Serial block-face (SBF) scanning electron microscopy (SEM) is used for imaging the entire internal ultrastructure of cells, tissue samples or small organisms. We developed a workflow for SBF SEM of adherent cells, such as Giardia parasites and HeLa cells, attached to the surface of a plastic culture dish, which preserves the interface between cells and plastic substrate. Cells were embedded in situ on their substrate using silicone microwells and were mounted for cross-sectioning which allowed SBF imaging of large volumes and many cells. In total we provide 10 data sets with image series from SBF SEM of Giardia and HeLa cells prepared with protocol variants to improve the workflow. A detailed description of the methods and the data set is provided in the download container. Data set 05 comprises an image series of 500 images recorded of a HeLa cell adhered to the plastic substrate of a culture dish. SBF SEM was done at a section interval of 50 nm using the DBS detector of the SEM at low vacuum (0.4 mbar). Original pixel size was 6 nm. The data folder contains the raw image files, processed image files (see data set description for details of the processing), a video file of a processed image file series.

Related Organizations
Keywords

plastic dish, cell biology, Electron microscopy, adherent cell culture, serial block-face imaging, ultrastructure, HeLa cell

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average