Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2024
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2024
License: CC BY
Data sources: ZENODO
ZENODO
Other literature type . 2024
License: CC BY
Data sources: Datacite
ZENODO
Other literature type . 2024
License: CC BY
Data sources: Datacite
ZENODO
Other literature type . 2024
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adaptive Hashing

Faster Hash Functions with Fewer Collisions
Authors: Melis, Gábor;
Abstract

Hash tables are ubiquitous, and the choice of hash function, which maps a key to a bucket, is key for their performance. We argue that the predominant approach of fixing the hash function for the lifetime of the hash table is suboptimal and propose adapting it to the current set of keys. In the prevailing view, good hash functions spread the keys "randomly'' and are fast to evaluate. General-purpose ones (e.g. Murmur) are designed to do both while remaining agnostic to the distribution of the keys, which limits their bucketing ability and wastes computation. When these shortcomings are recognised, the user of the hash table may specify a hash function more tailored to the expected key distribution, but doing so almost always introduces an unbounded risk in case their assumptions do not bear out in practice. At the other, fully key-aware end of the spectrum, Perfect Hashing algorithms can discover hash functions to bucket a given set of keys optimally, but they are costly to run and require the keys to be known and fixed ahead of time. Our main conceptual contribution is that adapting the hash table's hash function to the keys online is necessary for the best performance as adaptivity allows for better bucketing of keys and faster hash functions. We instantiate the idea of online adaptation with minimal overhead and no change to the hash table API. The experiments show that the adaptive approach marries the common-case performance of weak hash functions with the robustness of general-purpose ones.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green