<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This study introduces a time-lag-informed Random Forest (RF) framework for streamflow time series prediction across diverse catchments, and compares its results against SWAT predictions. We found strong evidence of RF's better performance by adding historical flows and time-lags for meteorological values over using only actual meteorological values. On a daily scale, RF demonstrated robust performance (Nash–Sutcliffe efficiency [NSE] > 0.5), whereas SWAT generally yielded unsatisfactory results (NSE < 0.5) and tended to overestimate daily streamflow by up to 27% (PBIAS). However, SWAT provided better monthly predictions, particularly in catchments with irregular flow patterns. Although both models faced challenges in predicting peak flows in snow-influenced catchments, RF outperformed SWAT in an arid catchment. RF also exhibited a notable advantage over SWAT in terms of computational efficiency. Overall, RF is a good choice for daily predictions with limited data, whereas SWAT is preferable for monthly predictions and understanding hydrological processes in depth. This repository contains the input data used for building the RF and SWAT models and the files describing the modeling results. The corresponding Zenodo code repository is available at https://zenodo.org/doi/10.5281/zenodo.11064973.
Hydrology, Hydroinformatics
Hydrology, Hydroinformatics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |